2. 西安建筑科技大学西北水资源与环境生态教育部重点实验室, 西安 710055;
3. 西安建筑科技大学陕西省环境工程重点实验室, 西安 710055;
4. 西安建筑科技大学城市非传统水资源开发利用国际科技合作基地, 西安 710055
2. Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China;
3. Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
4. International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China
塑料制品广泛应用于日常生活和工农业生产中[1], 已成为人类社会不可或缺的重要部分. 塑料在给人类带来便捷的同时, 也造成了全球性污染问题. 英国普利茅斯大学的Thompson等[2]在2004年率先提出了“微塑料(microplastics, MPs)”这一概念, 并指出MPs污染的严峻性. 由于MPs在环境中的分布极为广泛, 且难以自然降解. 针对MPs污染及其毒性效应的研究已成为环境领域备受瞩目的焦点话题. 2022年, 国务院办公厅颁布了《新污染物治理行动方案》, 明确指出MPs是当前危害生态系统和人体健康的一种新污染物[3]. MPs已被列入我国生态环境部的重点管控新污染物清单, 加强对其监测和治理将是今后一项长期且重要的任务.
虽然MPs污染的问题最初是在海洋中发现的, 但污染源头在人类生活的陆地. 地表水与人类生活息息相关, 是MPs向海洋中迁移的重要介质[4], 研究地表水中MPs的赋存特征对于控制其生态风险十分重要. 我国是最大的塑料生产和使用国[5], 每年进入海洋的塑料垃圾高达882万t, 占全球总量的27.70%. 2014年, Zhao等[6]发表的关于长江口MPs污染的研究论文是我国第一篇有关地表水体的MPs污染报道, 随后我国地表水体中MPs污染研究陆续展开. 由于受到地区的经济水平、工农业发展程度和居民生活习惯等因素影响, 不同流域和地区地表水体中的MPs丰度、材质类型和尺寸分布等存在较大差异. 例如, 岷江四川成都段表层水中MPs平均丰度高达15 880 items·m-3[7], 而香港大埔区林村河表层水中MPs平均丰度却仅有7 items·m-3[8];安徽巢湖沉积物中的MPs材质以聚对苯二甲酸乙二醇酯(PET)为主[9], 而陕西黄金峡水库沉积物中的MPs材质以聚乙烯(PE)和聚苯乙烯(PS)为主[10]. 不同材质MPs对生物的毒性有差异[11], 这就意味着不同地区的地表水中MPs生态风险也有一定区别.
我国地域广大, 不同水体MPs污染的研究报道逐年增多. 但大多数研究局限性较强, 研究区域较为单一, 主要集中在长江和珠江流域, 缺乏对我国地表水体MPs污染状况的全面分析. Fan等[12]综述了我国内陆水系MPs的污染特征, 但由于收集的数据有限, 未能体现出我国各流域的MPs分布特征. 此外, 目前大多数研究仅阐明了水体中MPs的丰度, 而对其造成的生态风险鲜见报道[13].
鉴于此, 本文通过收集整理我国河流、湖库及河口等地表水体中MPs污染的数据, 旨在从流域尺度分析我国地表水体中MPs污染的分布状况及其潜在生态风险, 并探讨地表水体MPs污染与人口、经济的关系, 以期为我国地表水体MPs的污染防治提供科学依据.
1 材料与方法 1.1 数据来源和研究区域使用Web of Science和中国知网等数据库检索2014~2023年间发表的有关我国地表水体MPs污染的文献, 共涉及117个地表水体, 包括77个河流, 31个湖库和9个河口水体, 其中地表水体表层水介质研究样本量为99, 沉积物介质研究样本量为72. MPs的截留收集通过滤膜过滤实现, 过滤孔径大多为0.45 μm;MPs的鉴定方法有傅里叶红外光谱法(Fourier transform infrared spectroscopy, FTIR)、显微傅里叶红外光谱法(micro-Fourier transform infrared spectroscopy, Micro-FTIR)、衰减全反射傅里叶红外光谱法(attenuated total reflection Fourier transform infrared spectroscopy, ATR-FTIR)和拉曼光谱法(Raman spectroscopy, Raman). MPs污染数据信息包含MPs的丰度(以平均值计)、材质、形状、尺寸和颜色. 为了便于比较, 将表层水和沉积物的MPs丰度单位分别用items·m-3和items·kg-1表示.
按照数据来源的地理位置归入我国的十大流域(松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河)进行比较分析. 依据“胡焕庸线”将我国分成东南部和西北部两大区域, 比较分析地表水体MPs污染特征. 地表水体MPs污染数据样本点和研究区域分布状况如图 1所示.
![]() |
基于2021年《中国水资源公报》[14]公布的GS京(2022)0112号标准地图制作, 底图无修改 图 1 我国地表水体MPs污染数据样本点和研究区域 Fig. 1 Data sample points and study area of MPs pollution in surface water bodies in China |
采用潜在生态风险指数法(potential ecological risk index, PERI)[15,16], 对我国地表水体中的MPs污染生态风险等级进行评价, 计算公式如下:
![]() |
式中, k表示MPs材质类型, 具体如表 1所示;Tk 表示塑料材质k的化学毒性系数;Pk 表示塑料材质k占该水体中报道的全部材质MPs的比例, 依据所归纳水体主要材质MPs的出现频次计算;Sk 表示塑料材质k的危害分数[11], 具体数值见表 1;Ci 表示MPs丰度;C0表示安全参考丰度, 其中, 表层水MPs安全参考丰度[17]:6 650 items·m-3, 沉积物MPs安全参考丰度[18]:540 items·kg-1;PERI k 和PERItot分别表示材质k MPs的潜在生态风险指数和该水体全部材质MPs的总潜在生态风险指数;材质k的MPs潜在生态风险指数对总潜在生态风险指数的贡献率使用PERI k 与PERItot的比值来表示.
![]() |
表 1 常见塑料材质类型及其危害分数1) Table 1 Common plastic material types and their hazard scores |
依据MPs潜在生态风险分级标准[16]和计算出的PERI值, 可将我国各流域地表水体MPs生态风险等级分为:Ⅰ级(PERI < 10, 无显著风险)、Ⅱ级(10≤PERI < 100, 低生态风险)、Ⅲ级(100≤PERI < 1 000, 中生态风险)和Ⅳ级(1 000≤PERI < 10 000, 高生态风险).
1.3 统计分析本研究通过Microsoft Excel 2010统计整理数据;利用Origin 2019b绘制相关图表;使用ArcGIS 10.8绘制我国地表水体MPs研究点位分布图;利用SPSS 22.0分别进行了不同类型湖库MPs丰度的独立样本t检验、地表水体MPs丰度与人口密度和GDP总量的Spearman相关性分析和Pearson线性回归分析.
2 结果与讨论 2.1 我国地表水体中的微塑料分布状况 2.1.1 河流中的微塑料丰度及材质类型在所有地表水体MPs研究中, 有关河流的研究最多[7,8,15,16,19~98]. 如图 2所示, 我国各流域河流表层水中MPs丰度范围为1~595 270 items·m-3, MPs丰度最高点位于黄河平安浮桥至新滩浮桥段[28], 最低点则在大风江钦州段[80]. 由于MPs丰度跨度极大, 使用中位值能够较好地反映出各流域MPs的分布特征. 松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河的河流表层水中MPs丰度中位值分别为35 804、4 630、2 357、2 000、7 735、6 500、1 285、2 150、628和17 639 items·m-3. 显然, 松花江流域河流表层水中MPs丰度中位值最高, 而西南诸河的最低.
![]() |
(a)表层水MPs丰度, (b)沉积物MPs丰度, (c)表层水MPs材质, (d)沉积物MPs材质 图 2 我国不同流域河流中MPs的丰度与材质分布 Fig. 2 Abundance and material distribution of MPs in rivers of different basins in China |
各流域河流沉积物中MPs丰度范围为17~32 947 items·kg-1, 最高值和最低值分别位于温瑞塘河[83]和灞河[33]. 松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河的河流沉积物中MPs丰度中位值分别为1 531、204、983、240、324、402、685、670、83和61 items·kg-1;松花江流域的河流沉积物MPs丰度中位值同样为最高, 海河流域则次之.
我国大多数流域河流表层水和沉积物中的MPs材质类型主要是PP、PE和PET, 这些材质的高适用性和工业相关性是它们大量存在的原因. 然而, 在海河流域河流表层水和沉积物中, MPs主要材质类型则为PU和EVA, 占比均在39.90%以上. PU、EVA塑料材质常用于建筑胶体、道路标记涂料、车辆零部件和电线电缆等[22]. 海河流域河流中这两类材质的MPs占比如此之高, 推测可能与京津冀地区大型工业基地的生产活动有密切关系[99]. 长江流域和东南诸河的MPs材质类型十分多样, 表明这些流域MPs污染来源复杂, 可能与产业类型多样化有关.
2.1.2 湖库中的微塑料丰度及材质类型从现有报道来看, 我国湖库MPs研究涉及松花江、海河、淮河、黄河、长江、珠江、西北诸河等流域[9,10,18,100~133], 以长江流域湖库研究最多. 如图 3所示, 我国各流域的湖库表层水中, MPs丰度中位值介于1~4 738 items·m-3范围内, 最高值和最低值分别出现在长江流域和珠江流域, 与河流表层水趋势明显不同. 位于黄浦江上游的金泽水库[45]表层水中的MPs丰度最高, 达28 300 items·m-3, 而表层水MPs丰度最低值位于飞来峡水库[130], 仅有1 items·m-3. 我国各流域湖库沉积物中, MPs丰度中位值介于19~1 236 items·kg-1之间. 海河流域的MPs丰度中位值最高, 而黄河流域的MPs丰度中位值最低. 草海湖[128]沉积物中MPs丰度最高, 达3 285 items·kg-1;而乌梁素海[103]沉积物中MPs丰度最低, 仅19 items·kg-1.
![]() |
(a)表层水MPs丰度, (b)沉积物MPs丰度, (c)表层水MPs材质, (d)沉积物MPs材质, (e)表层水MPs平均丰度, (f)沉积物MPs平均丰度;ns表示无显著性差异 图 3 我国湖库中MPs的丰度与材质分布 Fig. 3 Abundance and material distribution of MPs in lakes and reservoirs in China |
与河流MPs污染情况类似, PP、PE和PET也是我国大部分流域湖库中MPs的主要材质. 在松花江流域、淮河流域和西北诸河, PA材质MPs也比较多. PA具有轻便、耐磨的特点, 广泛用于包装材料、运动鞋袜、渔具等, 各流域湖库中的PA材质MPs, 可能主要来源于当地渔业和旅游活动产生的断线和碎片[100]. 除PA外, PE和PET亦为淮河流域湖库中MPs的主要材质, 这可能与流域内农田种植活动覆盖所用的PE薄膜[134]以及服装生产所需的PET纤维[135]的广泛使用和传播有关. 珠江流域湖库沉积物中的MPs, PP、PET和RA为最主要的3种材质, RA材质MPs较多可能与珠三角地区高度发达的纺织产业有关[70,131].
按上游是否有航运河道, 对各流域的湖库进行了归类, 并对其MPs丰度进行了独立样本t检验. 结果发现, 上游有航运河道的湖库表层水和沉积物中MPs丰度与上游无航运河道的湖库无显著性差异(表层水P=0.578 > 0.05, 沉积物P=0.249 > 0.05), 说明航运可能不是影响湖库中MPs分布的主要因素, 其分布可能受地表径流、降水、面源污染等其他因素影响.
2.1.3 入海河口中的微塑料丰度及材质类型我国入海河口MPs研究并不多[6,136~144], 涉及辽河、海河、黄河、长江、珠江、东南诸河流域. 从图 4可以看出, 入海河口表层水和沉积物中的MPs丰度中位值范围分别为869~792 100 items·m-3和120~1 228 items·kg-1. 黄河口表层水[28]和长江口沉积物[138,140,141]中的MPs丰度中位值显著高于其他入海河口. 位于珠江流域内的大风江口[80]MPs污染程度最轻, 其表层水和沉积物中MPs丰度分别为1 items·m-3和13 items·kg-1. PP和PE是入海河口中MPs的主要材质类型. 相较于其他流域, 珠江流域河口沉积物MPs材质同湖库沉积物趋势相近, 在表层水和沉积物中PP、PE、PET和RA的占比均在16%以上, MPs材质类型呈现多样化, 这可能归因于流域内珠三角地区高度发达的经济产业和密集的人口[74]. 由于河口处于河流与海洋的交汇处, 湍流和盐度变化可能会促使吸附电中和、混凝等环境化学作用的发生, 进而加速PE等较低密度MPs的聚集和沉降[145].
![]() |
(a)表层水MPs丰度, (b)沉积物MPs丰度, (c)表层水MPs材质, (d)沉积物MPs材质 图 4 我国不同流域入海河口中MPs的丰度与材质分布 Fig. 4 Abundance and material distribution of MPs in estuaries of different basins in China |
如图 5所示, 我国松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河的河流表层水中PERItot值分别为32.30、7.66、1 048.92、1.60、695.25、233.59、1.69、264.57、0.57和11.27;上述流域河流沉积物中PERItot值分别为17.01、4.16、6 729.00、2.37、639.00、251.41、8.88、7.86、1.92和0.68. 显而易见, 海河流域河流表层水和沉积物中的PERItot均为最高, 而河流表层水和沉积物的PERItot最低值分别出现在西南诸河和西北诸河.
![]() |
(a)表层水, (b)沉积物;灰色区域表示无数据 图 5 我国不同流域河流中的MPs生态风险评估 Fig. 5 Ecological risk assessment of MPs in rivers of different basins in China |
从河流表层水MPs生态风险等级来看, 处于无显著风险(Ⅰ级)有辽河、淮河、珠江流域及西南诸河, 处于低生态风险(Ⅱ级)的有松花江流域和西北诸河, 处于中生态风险(Ⅲ级)的有黄河、长江流域及东南诸河;仅有海河流域处于高生态风险(Ⅳ级). 大多数流域河流沉积物MPs生态风险等级与表层水风险等级一致, 唯有海河流域处于高生态风险(Ⅳ级). 东南诸河和西北诸河的沉积物MPs风险等级都低于其表层水风险等级. 相较于表层水, 沉积物MPs的研究报道偏少, 样本量有限. 从检测技术的角度上看, 沉积物中的MPs检测难度大, 容易漏检, 这可能导致MPs的PERItot值偏低.
分析不同材质MPs的PERI值可以发现, 黄河、长江流域及东南诸河河流表层水中的PERIPVC值都很高, PVC材质的MPs对PERItot值的贡献率分别达到98.07%、96.09%和99.18%;黄河和长江流域河流沉积物中PVC同样是PERItot的主要贡献者. 与之不同的是, 海河流域河流表层水和沉积物中的PERItot值则主要来自PU的贡献, 贡献率分别高达99.80%和99.88%. 由此可见, 不同流域中对生态风险高贡献的MPs材质类型可能有差异. 明确各流域中最大生态风险的MPs材质类型, 对于MPs风险管控具有重要意义.
2.2.2 湖库中的微塑料生态风险我国各流域湖库表层水MPs的PERItot值介于9.02×10-4~204.16之间, 湖库沉积物中MPs的PERItot值范围为0.26~429.12, 最高值都出现在长江流域(图 6). 黄河、珠江流域及西北诸河湖库均处于无显著风险(Ⅰ级), 松花江流域湖库表层水及淮河流域湖库沉积物处于低生态风险(Ⅱ级), 长江流域湖库表层水和沉积物MPs生态风险则均处于中生态风险(Ⅲ级).
![]() |
(a)表层水, (b)沉积物;灰色区域表示无数据 图 6 我国不同流域湖库中的MPs生态风险评估 Fig. 6 Ecological risk assessment of MPs in lakes and reservoirs of different basins in China |
值得注意的是, 长江流域湖库表层水和沉积物中的PERItot值绝大部分仍由PVC贡献, 贡献率分别达96.90%和97.08%, 太湖流域PVC材质MPs的污染尤为严重[113,114]. 最新研究表明, 有害蓝藻的分布可能会受MPs影响[146], 这就意味着湖库中的MPs可能会与有害蓝藻形成复合效应, 带来更为复杂的风险, 因此应特别重视湖库中PVC材质MPs的风险控制.
2.2.3 入海河口中的微塑料生态风险我国各入海河口表层水中的PERItot值范围分别为0.75~1 667.58, 而河口沉积物的PERItot值则整体偏低, 介于2.24~3.91. 从图 7可知, 大部分入海河口表层水和全部沉积物中的MPs都处于无显著风险(Ⅰ级), 而黄河入海口表层水处于高生态风险(Ⅳ级). 其PERItot值主要由PS和PE贡献, 贡献率分别为71.43%和26.19%.
![]() |
(a)表层水, (b)沉积物;灰色区域表示无数据 图 7 我国不同流域入海河口中的MPs生态风险评估 Fig. 7 Ecological risk assessment of MPs in estuaries of different basins in China |
胡焕庸线是我国人口发展水平和经济社会格局的重要分界线, 其东南侧人口密度大, 经济发达, 西北侧人口密度小, 经济欠发达. 胡焕庸线两侧地表水体中MPs的分布特征如图 8所示.
![]() |
(a)丰度特征, (b)材质特征, (c)形状特征, (d)尺寸特征, (e)颜色特征;SE-w表示东南部表层水, SE-s表示东南部沉积物, NW-w表示西北部表层水, NW-s表示西北部沉积物 图 8 我国地表水体中MPs的地域分布特征 Fig. 8 Regional distribution characteristics of MPs in surface water in China |
胡焕庸线东南侧和西北侧地表水体表层水MPs丰度中位值分别为3 158 items·m-3和1 292 items·m-3, 沉积物MPs丰度中位值分别为523 items·kg-1和61 items·kg-1, 可见胡焕庸线东南侧地表水体MPs污染相对更严重. 胡焕庸线两侧地表水体中MPs材质类型近似, 主要材质均为PP和PE, 这二者占比之和均不低于60.92%;MPs形状以纤维和碎片为主, 二者占比之和均在83.30%以上;透明的MPs占比均在37%以上;MPs尺寸大都在1 mm以下, 其占比均在72.70%以上. 以上也是我国地表水体MPs赋存的共性特征. 对于西北侧地表水MPs研究十分欠缺, 相关文献量仅为东南侧的1/7. 今后应逐步加强胡焕庸线西北侧地表水体MPs研究, 以期全面了解我国地表水体MPs污染状况. 不同地域地表水体中MPs的丰度特征存在差异, 这可能与地域的人口密度与经济发展等因素[118]有关.
2.3.2 微塑料的地域赋存影响因素利用Spearman等级相关系数法对我国部分典型地表水体MPs丰度与相关地区的人口密度、国内生产总值(GDP)总量进行了相关性统计分析. 收集整理的我国部分地表水体MPs丰度、对应地域人口密度和GDP总量数据见表 2. 回归分析结果如图 9所示. 人口密度和GDP总量数据信息来源于国家统计局.
![]() |
表 2 部分地表水体MPs丰度、地域人口密度及GDP总量 Table 2 Abundance of MPs in some surface waters, regional population density, and total GDP |
![]() |
图 9 MPs丰度与人口密度和GDP总量的回归分析 Fig. 9 Regression analysis of MPs abundance with population density and total GDP |
本研究结果发现, 我国地表水体MPs丰度与地域人口密度呈显著正相关(P=0.002 < 0.05), 与地域GDP总量亦呈显著正相关(P=0.000 < 0.05), 且MPs丰度与人口密度的相关性弱于与GDP总量的相关性. 李思琼等[16]针对长江流域MPs污染开展的研究也获得了相似的结果. 这表明, 尽管地表水体中MPs的分布受到水流搬运等迁移作用的影响, 但当地的人类活动和经济发展水平还是其丰度的决定性因素.
3 结论(1)我国地表水体中MPs的主要材质为PP和PE, 以透明的纤维和碎片为主, 尺寸大都在1 mm以下. 各流域河流、湖库和入海河口表层水中的MPs丰度中位值范围分别为628~35 804、1~4 738和869~792 100 items·m-3;沉积物中的MPs丰度中位值范围分别为61~1 531、19~1 236和120~1 228 items·kg-1.
(2)海河流域的河流MPs生态风险最高(Ⅳ级), 主要由PU贡献. 黄河流域和长江流域的河流处于中生态风险(Ⅲ级), 长江流域湖库的MPs生态风险为Ⅲ级, 其主要贡献材质均为PVC. 黄河流域入海河口表层水MPs生态风险为Ⅳ级, 主要由PS贡献.
(3)胡焕庸线东南侧地表水体表层水和沉积物中的MPs含量都明显高于西北侧, 西北侧地表水体MPs的研究报道较少. 地表水体MPs丰度与人口密度、GDP总量均呈显著正相关.
[1] | Derraik J G B. The pollution of the marine environment by plastic debris: a review[J]. Marine Pollution Bulletin, 2002, 44(9): 842-852. DOI:10.1016/S0025-326X(02)00220-5 |
[2] | Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. DOI:10.1126/science.1094559 |
[3] | 中华人民共和国国务院办公厅. 新污染物治理行动方案[R]. 北京: 国务院办公厅, 2022. |
[4] | Rochman C M. Microplastics research - from sink to source: microplastics are ubiquitous not just in the ocean but also on land and in freshwater systems[J]. Science, 2018, 360(6384): 28-29. DOI:10.1126/science.aar7734 |
[5] | Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. DOI:10.1126/science.1260352 |
[6] | Zhao S Y, Zhu L X, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1-2): 562-568. DOI:10.1016/j.marpolbul.2014.06.032 |
[7] | Li X T, Liang R F, Li Y, et al. Microplastics in inland freshwater environments with different regional functions: a case study on the Chengdu Plain[J]. Science of the Total Environment, 2021, 789. DOI:10.1016/j.scitotenv.2021.147938 |
[8] | Cheung P K, Hung P L, Fok L. River microplastic contamination and dynamics upon a rainfall event in Hong Kong, China[J]. Environmental Processes, 2019, 6(1): 253-264. DOI:10.1007/s40710-018-0345-0 |
[9] | Liu H T, Sun K X, Liu X Y, et al. Spatial and temporal distributions of microplastics and their macroscopic relationship with algal blooms in Chaohu Lake, China[J]. Journal of Contaminant Hydrology, 2022, 248. DOI:10.1016/j.jconhyd.2022.104028 |
[10] | Li C C, Gan Y D, Dong J Y, et al. Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China[J]. Chemosphere, 2020, 253. DOI:10.1016/j.chemosphere.2020.126740 |
[11] | Lithner D, Larsson Å, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18): 3309-3324. DOI:10.1016/j.scitotenv.2011.04.038 |
[12] | Fan J X, Zou L, Duan T, et al. Occurrence and distribution of microplastics in surface water and sediments in China's inland water systems: a critical review[J]. Journal of Cleaner Production, 2022, 331. DOI:10.1016/j.jclepro.2021.129968 |
[13] |
孙晓楠, 陈浩, 贾其隆, 等. 我国陆域水体系统表层水中微塑料生态风险评估[J]. 环境科学, 2022, 43(11): 5040-5052. Sun X N, Chen H, Jia Q L, et al. Ecological risk assessment of microplastics occurring in surface water of terrestrial water systems across China[J]. Environmental Science, 2022, 43(11): 5040-5052. |
[14] | 中华人民共和国水利部. 中国水资源公报2021[M]. 北京: 中国水利水电出版社, 2022. |
[15] | Peng G Y, Xu P, Zhu B S, et al. Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities[J]. Environmental Pollution, 2018, 234: 448-456. DOI:10.1016/j.envpol.2017.11.034 |
[16] |
李思琼, 王华, 储林佑, 等. 长江流域微塑料污染特征及生态风险评价[J]. 环境科学, 2024, 45(3): 1439-1447. Li S Q, Wang H, Chu L Y, et al. Pollution characteristics and ecological risk assessment of microplastics in the Yangtze River Basin[J]. Environmental Science, 2024, 45(3): 1439-1447. |
[17] | Everaert G, Van Cauwenberghe L, De Rijcke M, et al. Risk assessment of microplastics in the ocean: modelling approach and first conclusions[J]. Environmental Pollution, 2018, 242: 1930-1938. DOI:10.1016/j.envpol.2018.07.069 |
[18] | Shi M M, Zhu J X, Hu T P, et al. Occurrence, distribution and risk assessment of microplastics and polycyclic aromatic hydrocarbons in East lake, Hubei, China[J]. Chemosphere, 2023, 316. DOI:10.1016/j.chemosphere.2023.137864 |
[19] |
李昀东. 哈尔滨城市内河中微塑料赋存特征、源解析及环境影响因素[D]. 哈尔滨: 哈尔滨师范大学, 2022. Li Y D. Occurrence characteristics, source apportionment and environmental influencing factors of microplastics in the urban rivers of Harbin[D]. Harbin: Harbin Normal University, 2022. |
[20] | Xu Q J, Xing R L, Sun M D, et al. Microplastics in sediments from an interconnected river-estuary region[J]. Science of the Total Environment, 2020, 729. DOI:10.1016/j.scitotenv.2020.139025 |
[21] |
李江南, 凌玮, 沈茜, 等. 双台子河与大辽河表层水体微塑料特征与分布研究[J]. 生态毒理学报, 2021, 16(3): 192-199. Li J N, Ling W, Shen Q, et al. Characteristics and distribution of microplastics in surface water from Shuangtaizi River and Daliao River[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 192-199. |
[22] |
胡嘉敏, 左剑恶, 李頔, 等. 北京城市河流河水和沉积物中微塑料的组成与分布[J]. 环境科学, 2021, 42(11): 5275-5283. Hu J M, Zuo J E, Li D, et al. Composition and distribution of microplastics in the water and sediments of urban rivers in Beijing[J]. Environmental Science, 2021, 42(11): 5275-5283. |
[23] | Liu Y, Zhang J D, Cai C Y, et al. Occurrence and characteristics of microplastics in the Haihe River: an investigation of a seagoing river flowing through a megacity in northern China[J]. Environmental Pollution, 2020, 262. DOI:10.1016/j.envpol.2020.114261 |
[24] |
单世伟. 白洋淀及上游河流水环境和鱼类体内微塑料分布研究[D]. 保定: 河北大学, 2021. Shan S W. Distribution of microplastics in aquatic environment and fish body of the Baiyang Lake and its upstream rivers[D]. Baoding: Hebei University, 2021. |
[25] |
张鹏举, 蓝洁, 张凯璇, 等. 大沽河流域微塑料在不同介质中的空间分布及其潜在来源探究[J]. 环境化学, 2023, 42(12): 4093-4103. Zhang P J, Lan J, Zhang K X, et al. Spatial distribution and potential sources of microplastics in different media of Dagu River basin[J]. Environmental Chemistry, 2023, 42(12): 4093-4103. DOI:10.7524/j.issn.0254-6108.2022052607 |
[26] | Han M, Niu X R, Tang M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707. DOI:10.1016/j.scitotenv.2019.135601 |
[27] |
龚喜龙, 张道勇, 潘响亮. 黄河沉积物微塑料污染和表征[J]. 干旱区研究, 2020, 37(3): 790-798. Gong X L, Zhang D Y, Pan X L. Pollution and characterization of microplastics in the sediments of the Yellow River[J]. Arid Zone Research, 2020, 37(3): 790-798. |
[28] |
牛学锐. 黄河口表层水微塑料赋存特征研究[D]. 济南: 山东师范大学, 2020. Niu X R. Study on the occurrence characteristics of microplastics in the surface water of the Yellow River Estuary[D]. Ji'nan: Shandong Normal University, 2020. |
[29] | Ding L, Mao R F, Guo X T, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China[J]. Science of the Total Environment, 2019, 667: 427-434. DOI:10.1016/j.scitotenv.2019.02.332 |
[30] |
山泽萱. 渭河关中段地表水微塑料污染现状与风险评价[D]. 西安: 西北大学, 2022. Shan Z X. The current situation and risk assessment of microplastics pollution in surface water of Weihe River in Guanzhong Section[D]. Xi'an: Northwest University, 2022. |
[31] |
王昱丹, 桂维振, 邵天杰, 等. 无定河上游流域水体微塑料污染现状与分布特征[J]. 中国环境科学, 2023, 43(10): 5583-5590. Wang Y D, Gui W Z, Shao T J, et al. Water microplastics pollution and distribution characteristics in the upper Wuding River Basin[J]. China Environmental Science, 2023, 43(10): 5583-5590. DOI:10.3969/j.issn.1000-6923.2023.10.055 |
[32] |
武帆, 张峰, 刘晓琎, 等. 河道综合治理后城市水体沉积物中微塑料污染特征研究——以汾河太原城区段为例[J]. 环境污染与防治, 2022, 44(1): 61-66. Wu F, Zhang F, Liu X J, et al. Study on the characteristics of microplastics pollution in urban water sediments after comprehensive regulation of rivers: taking the Taiyuan section of Fenhe River as an example[J]. Environmental Pollution and Control, 2022, 44(1): 61-66. |
[33] |
黄毅, 武军旭, 米峰江, 等. 西安城区灞河河段微塑料的分离及其表面形貌特征[J]. 净水技术, 2022, 41(11): 137-143. Huang Y, Wu J X, Mi F J, et al. Separation and surface morphological characteristics of microplastics in urban reaches of Bahe River in Xi'an City[J]. Water Purification Technology, 2022, 41(11): 137-143. |
[34] | Xiong X, Wu C X, Elser J J, et al. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River - From inland to the sea[J]. Science of the Total Environment, 2019, 659: 66-73. DOI:10.1016/j.scitotenv.2018.12.313 |
[35] | Fan J X, Zou L, Zhao G L. Microplastic abundance, distribution, and composition in the surface water and sediments of the Yangtze River along Chongqing City, China[J]. Journal of Soils and Sediments, 2021, 21(4): 1840-1851. DOI:10.1007/s11368-021-02902-5 |
[36] |
胡隆腾. 长江重庆段微塑料的分布特征及其在鲢鱼体内的累积效应研究[D]. 重庆: 重庆交通大学, 2022. Hu L T. Distribution characteristics of microplastics in the Chongqing section of the Yangtze River and their cumulative effect in silver carp[D]. Chongqing: Chongqing Jiaotong University, 2022. |
[37] |
张胜, 潘雄, 林莉, 等. 长江源区水体微塑料组成及分布特征初探[J]. 长江科学院院报, 2021, 38(4): 12-18. Zhang S, Pan X, Lin L, et al. Preliminary study on composition and distribution characteristics of microplastics in water from the source region of Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4): 12-18. |
[38] | Yuan W K, Christie-Oleza J A, Xu E G, et al. Environmental fate of microplastics in the world's third-largest river: basin-wide investigation and microplastic community analysis[J]. Water Research, 2022, 210. DOI:10.1016/j.watres.2021.118002 |
[39] | Wang W F, Ndungu A W, Li Z, et al. Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1369-1374. DOI:10.1016/j.scitotenv.2016.09.213 |
[40] |
孙楠. 赣江流域赣州城区段水体微塑料的分布特征研究[D]. 赣州: 江西理工大学, 2022. Sun N. Distribution of microplastics in water bodies of urban Ganzhou in source of Ganjiang River Basin[D]. Ganzhou: Jiangxi University of Science and Technology, 2022. |
[41] | 吕雅宁. 赣江水和沉积物体系中微塑料的污染研究[D]. 曲阜: 曲阜师范大学, 2020. |
[42] | Hu H, Jin D F, Yang Y Y, et al. Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level[J]. Environmental Research, 2021, 200. DOI:10.1016/j.envres.2021.111363 |
[43] |
申茂才. 湘江水体中微塑料的污染特征和载体效应及去除机理研究[D]. 长沙: 湖南大学, 2022. Shen M C. Research on abundance, vector effect and removal of microplastics in freshwater from Xiangjiang River[D]. Changsha: Hunan University, 2022. |
[44] | Yin L S, Wen X F, Huang D L, et al. Abundance, characteristics, and distribution of microplastics in the Xiangjiang river, China[J]. Gondwana Research, 2022, 107: 123-133. DOI:10.1016/j.gr.2022.01.019 |
[45] | Chen H, Jia Q L, Zhao X, et al. The occurrence of microplastics in water bodies in urban agglomerations: impacts of drainage system overflow in wet weather, catchment land-uses, and environmental management practices[J]. Water Research, 2020, 183. DOI:10.1016/j.watres.2020.116073 |
[46] |
赵昕, 陈浩, 贾其隆, 等. 城市河道表层水及沉积物中微塑料的污染现状与污染行为[J]. 环境科学, 2020, 41(8): 3612-3620. Zhao X, Chen H, Jia Q L, et al. Pollution status and pollution behavior of microplastic in surface water and sediment of urban rivers[J]. Environmental Science, 2020, 41(8): 3612-3620. |
[47] |
郑亮, 刘一萌, 李晓辰, 等. 上海市松江地区河道微塑料分布特征[J]. 海洋渔业, 2021, 43(2): 241-246. Zheng L, Liu Y M, Li X C, et al. Distribution characteristics of microplastics in urban rivers of Songjiang District, Shanghai[J]. Marine Fisheries, 2021, 43(2): 241-246. DOI:10.3969/j.issn.1004-2490.2021.02.013 |
[48] | Luo W Y, Su L, Craig N J, et al. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters[J]. Environmental Pollution, 2019, 246: 174-182. DOI:10.1016/j.envpol.2018.11.081 |
[49] |
罗文雅. 长三角地区不同水域环境中微塑料污染特征研究[D]. 上海: 华东师范大学, 2019. Luo W Y. Microplastic pollution in different waters from Yangtze River Delta, China[D]. Shanghai: East China Normal University, 2019. |
[50] |
陈圣盛, 李卫明, 张坤, 等. 香溪河流域微塑料的分布特征及其迁移规律分析[J]. 环境科学, 2022, 43(6): 3077-3087. Chen S S, Li W M, Zhang K, et al. Distribution characteristics of microplastics and their migration patterns in Xiangxi River Basin[J]. Environmental Science, 2022, 43(6): 3077-3087. |
[51] |
许万璐, 范一凡, 钱新. 典型城市河网沉积物微塑料时空分布特征[J]. 环境科学, 2024, 45(4): 2142-2149. Xu W L, Fan Y F, Qian X. Spatial and temporal distribution of microplastics in the sediments of typical urban river network[J]. Environmental Science, 2024, 45(4): 2142-2149. |
[52] | Fan Y F, Zheng J L, Deng L G, et al. Spatiotemporal dynamics of microplastics in an urban river network area[J]. Water Research, 2022, 212. DOI:10.1016/j.watres.2022.118116 |
[53] | Li Y B, Lu Z B, Zheng H Y, et al. Microplastics in surface water and sediments of Chongming Island in the Yangtze Estuary, China[J]. Environmental Sciences Europe, 2020, 32(1): 15. DOI:10.1186/s12302-020-0297-7 |
[54] | Rao Z, Niu S P, Zhan N, et al. Microplastics in sediments of River Yongfeng from Maanshan City, Anhui Province, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(2): 166-172. DOI:10.1007/s00128-019-02771-2 |
[55] | Liu S L, Jian M F, Zhou L Y, et al. Distribution and characteristics of microplastics in the sediments of Poyang Lake, China[J]. Water Science & Technology, 2019, 79(10): 1868-1877. |
[56] |
周隆胤, 简敏菲, 余厚平, 等. 乐安河—鄱阳湖段底泥微塑料的分布特征及其来源[J]. 土壤学报, 2018, 55(5): 1222-1232. Zhou L Y, Jian M F, Yu H P, et al. Distribution of microplastics and its source in the sediments of the Le'an River in Poyang Lake[J]. Acta Pedologica Sinica, 2018, 55(5): 1222-1232. |
[57] |
简敏菲, 周隆胤, 余厚平, 等. 鄱阳湖-饶河入湖段湿地底泥中微塑料的分离及其表面形貌特征[J]. 环境科学学报, 2018, 38(2): 579-586. Jian M F, Zhou L Y, Yu H P, et al. Separation and microscopic study of microplastics from the sediments of the wetland in the estuary of Raohe River of Poyang Lake[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 579-586. |
[58] | Zhou G Y, Wang Q G, Zhang J, et al. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China[J]. Environmental Research, 2020, 189. DOI:10.1016/j.envres.2020.109893 |
[59] | Li J L, Ouyang Z Z, Liu P, et al. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2021.145591 |
[60] | Mao Y F, Li H, Gu W K, et al. Distribution and characteristics of microplastics in the Yulin River, China: Role of environmental and spatial factors[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.115033 |
[61] | Hu L L, Chernick M, Hinton D E, et al. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China[J]. Environmental Science & Technology, 2018, 52(15): 8885-8893. |
[62] |
高雅坤, 李卫明, 张续同, 等. 玛瑙河多环境介质和铜锈环棱螺体内微塑料的赋存特征[J]. 环境科学, 2024, 45(3): 1849-1858. Gao Y K, Li W M, Zhang X T, et al. Occurrence characteristics of microplastics in multi-environmental media and Bellamya aeruginosa of Manao River[J]. Environmental Science, 2024, 45(3): 1849-1858. |
[63] |
叶秋霞. 南京城市典型水体中微塑料污染特征分析[J]. 能源环境保护, 2020, 34(5): 79-83. Ye Q X. Characteristics of micro-plastic pollution in Nanjing urban waters[J]. Energy Environmental Protection, 2020, 34(5): 79-83. |
[64] |
程伟彬, 何成达, 朱腾义, 等. 扬州市城区水体微塑料赋存特征及生态风险分析[J]. 环境科学与技术, 2023, 46(5): 223-228. Cheng W B, He C D, Zhu T Y, et al. Occurrence characteristics and ecological risk analysis of microplastics in urban waters of Yangzhou City[J]. Environmental Science & Technology, 2023, 46(5): 223-228. |
[65] | Zhang Y T, Peng Y T, Xu S Z, et al. Distribution characteristics of microplastics in urban rivers in Chengdu City: the influence of land-use type and population and related suggestions[J]. Science of the Total Environment, 2022, 846. DOI:10.1016/j.scitotenv.2022.157411 |
[66] |
陈子威. 合肥市典型水环境微塑料污染分布特征及治理策略研究[D]. 合肥: 安徽建筑大学, 2022. Chen Z W. Investigation on distribution characteristics and treatment strategies of microplastics pollution in typical water environment of Hefei City[D]. Hefei: Anhui Jianzhu University, 2022. |
[67] |
周刚. 微塑料在淀山湖及太浦河流域的污染负荷、赋存特征和生态风险评价[D]. 上海: 东华大学, 2022. Zhou G. Distribution, composition and ecological risks of microplastics pollution in the watershed water of Dianshan Lake and Taipu River[D]. Shanghai: Donghua University, 2022. |
[68] | Zhang L S, Liu J Y, Xie Y S, et al. Distribution of microplastics in surface water and sediments of Qin river in Beibu Gulf, China[J]. Science of the Total Environment, 2020, 708. DOI:10.1016/j.scitotenv.2019.135176 |
[69] | Fan Y J, Zheng K, Zhu Z W, et al. Distribution, sedimentary record, and persistence of microplastics in the Pearl River catchment, China[J]. Environmental Pollution, 2019, 251: 862-870. DOI:10.1016/j.envpol.2019.05.056 |
[70] | Li Y Z, Zhang Y D, Chen G L, et al. Microplastics in surface waters and sediments from Guangdong Coastal Areas, South China[J]. Sustainability, 2021, 13(5). DOI:10.3390/su13052691 |
[71] | Wang J D, Peng J P, Tan Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171: 248-258. DOI:10.1016/j.chemosphere.2016.12.074 |
[72] | Zhang X, Leng Y F, Liu X N, et al. Microplastics' pollution and risk assessment in an urban river: a case study in the Yongjiang River, Nanning City, South China[J]. Exposure and Health, 2020, 12(2): 141-151. DOI:10.1007/s12403-018-00296-3 |
[73] | Wu P F, Tang Y Y, Dang M, et al. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science of the Total Environment, 2020, 717. DOI:10.1016/j.scitotenv.2019.135187 |
[74] | Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River estuary, China[J]. Chemosphere, 2019, 217: 879-886. DOI:10.1016/j.chemosphere.2018.11.093 |
[75] | Lin L, Zuo L Z, Peng J P, et al. Occurrence and distribution of microplastics in an urban river: a case study in the Pearl River along Guangzhou City, China[J]. Science of the Total Environment, 2018, 644: 375-381. DOI:10.1016/j.scitotenv.2018.06.327 |
[76] | Huang D F, Li X Y, Ouyang Z Z, et al. The occurrence and abundance of microplastics in surface water and sediment of the West River downstream, in the south of China[J]. Science of the Total Environment, 2021, 756. DOI:10.1016/j.scitotenv.2020.143857 |
[77] | Xue B M, Zhang L L, Li R L, et al. Underestimated microplastic pollution derived from fishery activities and "hidden" in deep sediment[J]. Environmental Science & Technology, 2020, 54(4): 2210-2217. |
[78] | Cheung P K, Fok L, Hung P L, et al. Spatio-temporal comparison of neustonic microplastic density in Hong Kong waters under the influence of the Pearl River Estuary[J]. Science of the Total Environment, 2018, 628-629: 731-739. DOI:10.1016/j.scitotenv.2018.01.338 |
[79] | Shu X H, Xu L Z, Yang M H, et al. Spatial distribution characteristics and migration of microplastics in surface water, groundwater and sediment in karst areas: the case of Yulong River in Guilin, Southwest China[J]. Science of the Total Environment, 2023, 868. DOI:10.1016/j.scitotenv.2023.161578 |
[80] | Liu S, Chen H, Wang J Z, et al. The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China[J]. Ecotoxicology and Environmental Safety, 2021, 228. DOI:10.1016/j.ecoenv.2021.113009 |
[81] |
李高俊, 熊雄, 詹晨熙, 等. 南渡江水体微塑料污染现状研究[J]. 环境科学学报, 2022, 42(2): 205-212. Li G J, Xiong X, Zhan C X, et al. Occurrence of microplastics in the water of the Nandu Jiang River[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 205-212. |
[82] | Wong G, Löwemark L, Kunz A. Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: spatial heterogeneity and correlation with precipitation[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.113935 |
[83] | Wang Z F, Su B B, Xu X Q, et al. Preferential accumulation of small (< 300 μm) microplastics in the sediments of a coastal plain river network in eastern China[J]. Water Research, 2018, 144: 393-401. |
[84] | Fraser M A, Chen L, Ashar M, et al. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China[J]. Ecotoxicology and Environmental Safety, 2020, 196. DOI:10.1016/j.ecoenv.2020.110536 |
[85] | Zhao W L, Huang W, Yin M C, et al. Tributary inflows enhance the microplastic load in the estuary: a case from the Qiantang River[J]. Marine Pollution Bulletin, 2020, 156. DOI:10.1016/j.marpolbul.2020.111152 |
[86] | Dai L Y, Wang Z Y, Guo T J, et al. Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China[J]. Chemosphere, 2022, 293. DOI:10.1016/j.chemosphere.2022.133576 |
[87] | Huang Y L, Tian M, Jin F, et al. Coupled effects of urbanization level and dam on microplastics in surface waters in a coastal watershed of Southeast China[J]. Marine Pollution Bulletin, 2020, 154. DOI:10.1016/j.marpolbul.2020.111089 |
[88] |
商卫纯, 郑吉, 卢玺丹, 等. 宁波市水体中微塑料的赋存特征及影响因素[J]. 环境污染与防治, 2022, 44(9): 1157-1163. Shang W C, Zheng J, Lu X D, et al. Occurrence characteristics and affecting factors of microplastics in urban waterbody of Ningbo[J]. Environmental Pollution and Control, 2022, 44(9): 1157-1163. |
[89] | Deng H, Wei R, Luo W Y, et al. Microplastic pollution in water and sediment in a textile industrial area[J]. Environmental Pollution, 2020, 258. DOI:10.1016/j.envpol.2019.113658 |
[90] | Tien C J, Wang Z X, Chen C S. Microplastics in water, sediment and fish from the Fengshan River system: relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.114962 |
[91] | Xu Y Y, Chan F K S, Johnson M, et al. Microplastic pollution in Chinese urban rivers: the influence of urban factors[J]. Resources, Conservation and Recycling, 2021, 173. DOI:10.1016/j.resconrec.2021.105686 |
[92] | Pan Z, Sun Y, Liu Q L, et al. Riverine microplastic pollution matters: a case study in the Zhangjiang River of Southeastern China[J]. Marine Pollution Bulletin, 2020, 159. DOI:10.1016/j.marpolbul.2020.111516 |
[93] | Jiang C B, Yin L S, Li Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249: 91-98. |
[94] | Feng S S, Lu H W, Yao T C, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau[J]. Journal of Hazardous Materials, 2021, 417. DOI:10.1016/j.jhazmat.2021.126034 |
[95] |
周阿美. 微塑料在拉萨河的分布特征及其对模式水生植物紫萍的毒性效应[D]. 拉萨: 西藏大学, 2023. Zhou A M. Distribution characteristics of microplastics in the Lhasa River and their toxic effects on model aquatic plant Spirodela polyrrhiza[D]. Lhasa: Tibet University, 2023. |
[96] | Yang L, Luo W, Zhao P, et al. Microplastics in the Koshi River, a remote alpine river crossing the Himalayas from China to Nepal[J]. Environmental Pollution, 2021, 290. DOI:10.1016/j.envpol.2021.118121 |
[97] | Wang G L, Lu J J, Tong Y B, et al. Occurrence and pollution characteristics of microplastics in surface water of the Manas River Basin, China[J]. Science of the Total Environment, 2020, 710. DOI:10.1016/j.scitotenv.2019.136099 |
[98] | Feng S S, Lu H W, Tian P P, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739. DOI:10.1016/j.scitotenv.2020.140087 |
[99] | Hu S X, Ren F M, Jia J M, et al. Exploring the environmental properties and resource utilization of construction waste in Beijing-Tianjin-Hebei region[J]. Environmental Science and Pollution Research, 2022. DOI:10.1007/s11356-022-23327-8 |
[100] | Yin K, Wang D X, Zhao H J, et al. Microplastics pollution and risk assessment in water bodies of two nature reserves in Jilin Province: correlation analysis with the degree of human activity[J]. Science of the Total Environment, 2021, 799. DOI:10.1016/j.scitotenv.2021.149390 |
[101] |
姚明轩, 白雪, 徐振佳, 等. 骆马湖表层沉积物微塑料的分布、来源及储存量[J]. 环境科学, 2022, 43(5): 2566-2574. Yao M X, Bai X, Xu Z J, et al. Distribution characteristics, sources, and storage of microplastics in surface sediments of Luoma Lake[J]. Environmental Science, 2022, 43(5): 2566-2574. |
[102] | Mao R F, Hu Y Y, Zhang S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, northern China[J]. Science of the Total Environment, 2020, 723. DOI:10.1016/j.scitotenv.2020.137820 |
[103] | Qin Y M, Wang Z C, Li W P, et al. Microplastics in the sediment of Lake Ulansuhai of Yellow River Basin, China[J]. Water Environment Research, 2020, 92(6): 829-839. |
[104] | Wang Z C, Qin Y M, Li W P, et al. Microplastic contamination in freshwater: first observation in Lake Ulansuhai, Yellow River Basin, China[J]. Environmental Chemistry Letters, 2019, 17(4): 1821-1830. |
[105] |
王志超, 杨建林, 杨帆, 等. 春季乌梁素海水体微塑料分布特征及影响因素[J]. 农业环境科学学报, 2021, 40(10): 2189-2197. Wang Z C, Yang J L, Yang F, et al. Spatial distribution characteristics and influencing factors of microplastics in Lake Ulansuhai during the spring[J]. Journal of Agro-Environment Science, 2021, 40(10): 2189-2197. |
[106] |
周添红, 张佳倩, 闵芮, 等. 刘家峡水库微塑料的赋存特征及其风险评估[J]. 中国环境科学, 2023, 43(11): 6007-6015. Zhou T H, Zhang J Q, Min R, et al. Occurrence characteristics and risk assessment of microplastics in Liujiaxia reservoir[J]. China Environmental Science, 2023, 43(11): 6007-6015. |
[107] | Yin L S, Jiang C B, Wen X F, et al. Microplastic pollution in surface water of urban lakes in Changsha, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(9). DOI:10.3390/ijerph16091650 |
[108] | Wen X F, Du C Y, Xu P, et al. Microplastic pollution in surface sediments of urban water areas in Changsha, China: abundance, composition, surface textures[J]. Marine Pollution Bulletin, 2018, 136: 414-423. |
[109] | Li L, Geng S X, Wu C X, et al. Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin[J]. Environmental Pollution, 2019, 254. DOI:10.1016/j.envpol.2019.07.119 |
[110] | Yin L S, Wen X F, Du C Y, et al. Comparison of the abundance of microplastics between rural and urban areas: a case study from East Dongting Lake[J]. Chemosphere, 2020, 244. DOI:10.1016/j.chemosphere.2019.125486 |
[111] | Wang W F, Yuan W K, Chen Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545. |
[112] | Jiang C B, Yin L S, Wen X F, et al. Microplastics in sediment and surface water of West Dongting Lake and South Dongting Lake: abundance, source and composition[J]. International Journal of Environmental Research and Public Health, 2018, 15(10). DOI:10.3390/ijerph15102164 |
[113] | Su L, Xue Y G, Li L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. |
[114] | Zhang Q J, Liu T, Liu L, et al. Distribution and sedimentation of microplastics in Taihu Lake[J]. Science of the Total Environment, 2021, 795. DOI:10.1016/j.scitotenv.2021.148745 |
[115] | Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. |
[116] |
李文华, 简敏菲, 刘淑丽, 等. 鄱阳湖湖口-长江段沉积物中微塑料与重金属污染物的赋存关系[J]. 环境科学, 2020, 41(1): 242-252. Li W H, Jian M F, Liu S L, et al. Occurrence relationship between microplastics and heavy metals pollutants in the estuarine sediments of Poyang Lake and the Yangtze River[J]. Environmental Science, 2020, 41(1): 242-252. |
[117] | Di M X, Liu X N, Wang W F, et al. Manuscript prepared for submission to environmental toxicology and pharmacology pollution in drinking water source areas: microplastics in the Danjiangkou Reservoir, China[J]. Environmental Toxicology and Pharmacology, 2019, 65: 82-89. |
[118] |
潘雄, 林莉, 张胜, 等. 丹江口水库及其入库支流水体中微塑料组成与分布特征[J]. 环境科学, 2021, 42(3): 1372-1379. Pan X, Lin L, Zhang S, et al. Composition and distribution characteristics of microplastics in Danjiangkou Reservoir and its tributaries[J]. Environmental Science, 2021, 42(3): 1372-1379. |
[119] | Lin L, Pan X, Zhang S, et al. Distribution and source of microplastics in China's second largest reservoir-Danjiangkou Reservoir[J]. Journal of Environmental Sciences, 2021, 102: 74-84. |
[120] | Xia W L, Rao Q Y, Deng X W, et al. Rainfall is a significant environmental factor of microplastic pollution in inland waters[J]. Science of the Total Environment, 2020, 732. DOI:10.1016/j.scitotenv.2020.139065 |
[121] | Liu Y, Fang J S. Coastal lakes as a buffer zone for the accumulation and redistribution of plastic particles from continental to marine environment: a case study of the Dishui Lake in Shanghai, China[J]. Applied Sciences, 2020, 10(6). DOI:10.3390/app10061974 |
[122] | Xu X, Zhang L, Xue Y G, et al. Microplastic pollution characteristic in surface water and freshwater fish of Gehu Lake, China[J]. Environmental Science and Pollution Research, 2021, 28(47): 67203-67213. |
[123] |
刘运钊. 大房郢水库微塑料污染现状和生态风险评价[D]. 合肥: 安徽大学, 2022. Liu Y Z. Pollution status and ecological risk assessment of microplastics in the Dafangying Reservoir[D]. Hefei: Anhui University, 2022. |
[124] |
王璇, 牛司平, 宋小龙, 等. 城市湖泊沉积物微塑料污染特征[J]. 环境科学, 2020, 41(7): 3240-3248. Wang X, Niu S P, Song X L, et al. Characterization of microplastic pollution of sediments from urban lakes[J]. Environmental Science, 2020, 41(7): 3240-3248. |
[125] |
文晓凤, 尹令实, 蒋昌波, 等. 典型城市湖泊岳阳南湖表层水体中的微塑料污染特征[J]. 环境化学, 2022, 41(11): 3579-3588. Wen X F, Yin L S, Jiang C B, et al. Microplastics in surface water of a typical urban lake: a case study from Nanhu Lake, Yueyang City[J]. Environmental Chemistry, 2022, 41(11): 3579-3588. |
[126] | Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616-617: 1620-1627. |
[127] |
张潇峮, 彭梦, 王艺, 等. 三峡库区重庆段表层水体中微塑料组成及分布特征[J]. 淡水渔业, 2022, 52(1): 90-95. Zhang X Q, Peng M, Wang Y, et al. Composition and distribution characteristics of microplastics in surface water of Chongqing section of the Three Gorges Reservoir[J]. Freshwater Fisheries, 2022, 52(1): 90-95. |
[128] | Zhang Z M, Wu X L, Zhang J C, et al. Distribution and migration characteristics of microplastics in farmland soils, surface water and sediments in Caohai Lake, southwestern plateau of China[J]. Journal of Cleaner Production, 2022, 366. DOI:10.1016/j.jclepro.2022.132912 |
[129] |
袁海英, 侯磊, 梁启斌, 等. 滇池近岸水体微塑料污染与富营养化的相关性[J]. 环境科学, 2021, 42(7): 3166-3175. Yuan H Y, Hou L, Liang Q B, et al. Correlation between microplastics pollution and eutrophication in the near shore waters of Dianchi Lake[J]. Environmental Science, 2021, 42(7): 3166-3175. |
[130] | Tan X L, Yu X B, Cai L Q, et al. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China[J]. Chemosphere, 2019, 221: 834-840. |
[131] | Li B, Wan H, Cai Y P, et al. Human activities affect the multidecadal microplastic deposition records in a subtropical urban lake, China[J]. Science of the Total Environment, 2022, 820. DOI:10.1016/j.scitotenv.2022.153187 |
[132] |
吴昊南. 内蒙古高原湖泊水体与沉积物中微塑料的赋存特征研究[D]. 呼和浩特: 内蒙古大学, 2022. Wu H N. Study on the occurrence characteristics of microplastics in lake water and sediment in Inner Mongolia Plateau[D]. Hohhot: Inner Mongolia University, 2022. |
[133] |
刘智琦. 青藏高原典型内陆湖泊水环境中微塑料的分布及风险评价[D]. 西安: 西安理工大学, 2022. Liu Z Q. Distribution and risk assessment of microplastics in water environment of typical inland lake in Tibetan Plateau[D]. Xi'an: Xi'an University of Technology, 2022. |
[134] | Ng E L, Huerta Lwanga E, Eldridge S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627: 1377-1388. |
[135] | Carr S A. Sources and dispersive modes of micro-fibers in the environment[J]. Integrated Environmental Assessment and Management, 2017, 13(3): 466-469. |
[136] | Wu N, Zhang Y, Zhang X H, et al. Occurrence and distribution of microplastics in the surface water and sediment of two typical estuaries in Bohai Bay, China[J]. Environmental Science: Processes & Impacts, 2019, 21(7): 1143-1152. |
[137] | Zhao S Y, Wang T, Zhu L X, et al. Analysis of suspended microplastics in the Changjiang Estuary: implications for riverine plastic load to the ocean[J]. Water Research, 2019, 161: 560-569. |
[138] | Wu F R, Pennings S C, Tong C F, et al. Variation in microplastics composition at small spatial and temporal scales in a tidal flat of the Yangtze Estuary, China[J]. Science of the Total Environment, 2020, 699. DOI:10.1016/j.scitotenv.2019.134252 |
[139] | Xu P, Peng G Y, Su L, et al. Microplastic risk assessment in surface waters: a case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2018, 133: 647-654. |
[140] | Peng G Y, Zhu B S, Yang D Q, et al. Microplastics in sediments of the Changjiang Estuary, China[J]. Environmental Pollution, 2017, 225: 283-290. |
[141] |
朱晓桐, 衣俊, 强丽媛, 等. 长江口潮滩表层沉积物中微塑料的分布及沉降特点[J]. 环境科学, 2018, 39(5): 2067-2074. Zhu X T, Yi J, Qiang L Y, et al. Distribution and settlement of microplastics in the surface sediment of Yangtze Estuary[J]. Environmental Science, 2018, 39(5): 2067-2074. |
[142] | Lam T W L, Fok L, Lin L, et al. Spatial variation of floatable plastic debris and microplastics in the Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2020, 158. DOI:10.1016/j.marpolbul.2020.111383 |
[143] | Zuo L Z, Sun Y X, Li H X, et al. Microplastics in mangrove sediments of the Pearl River Estuary, South China: correlation with halogenated flame retardants' levels[J]. Science of the Total Environment, 2020, 725. DOI:10.1016/j.scitotenv.2020.138344 |
[144] | Zhao S Y, Zhu L X, Li D J. Microplastic in three urban estuaries, China[J]. Environmental Pollution, 2015, 206: 597-604. |
[145] | Wang Y, Chen X W. Aggregation behavior of polyethylene microplastics in the nearshore environment: the role of particle size, environmental condition and turbulent flow[J]. Science of the Total Environment, 2023, 901. DOI:10.1016/j.scitotenv.2023.165941 |
[146] | Wang K, Lin H, Wang S M, et al. Species diversity and community structure of microalgae living on microplastics in Luoyuan Bay, China[J]. Marine Pollution Bulletin, 2022, 180. DOI:10.1016/j.marpolbul.2022.113809 |
[147] | 国家统计局. 国家统计局官网[EB/OL]. https://www.stats.gov.cn/, 2023-12-28. |