环境科学  2025, Vol. 46 Issue (5): 2694-2707   PDF    
我国地表水体微塑料的流域分布特征和生态风险
潘玉龙1,2,3, 张崇淼1,2,3,4     
1. 西安建筑科技大学环境与市政工程学院, 西安 710055;
2. 西安建筑科技大学西北水资源与环境生态教育部重点实验室, 西安 710055;
3. 西安建筑科技大学陕西省环境工程重点实验室, 西安 710055;
4. 西安建筑科技大学城市非传统水资源开发利用国际科技合作基地, 西安 710055
摘要: 为全面了解我国地表水体中微塑料分布状况并阐明其生态风险, 收集整理2014~2023年我国河流、湖库及入海河口等地表水体数据, 利用潜在生态风险指数法对我国十大流域的地表水体微塑料生态风险进行综合评价. 结果表明, 我国不同流域河流、湖库和入海河口均受到微塑料污染, 其主要材质为聚丙烯和聚乙烯, 以无色透明纤维和碎片为主, 尺寸大都在1 mm以下, 但微塑料丰度差异明显. 各流域的河流、湖库和入海河口表层水中的微塑料丰度中位值范围分别为628~35 804、1~4 738和869~792 100 items·m-3;沉积物中的微塑料丰度中位值范围分别为61~1 531、19~1 236和120~1 228 items·kg-1. 从各流域河流的微塑料总潜在生态风险指数(PERItot)来看, 海河流域处于高生态风险(Ⅳ级), 而黄河和长江流域则均处于中生态风险(Ⅲ级). 海河流域河流的PERItot绝大部分来自聚氨酯的贡献, 最高贡献率达99.88%, 而黄河和长江流域河流和湖库PERItot、黄河流域入海河口表层水PERItot的主要贡献者分别为聚氯乙烯和聚苯乙烯. 胡焕庸线东南侧地表水体微塑料污染严重, 而西北侧地表水体微塑料的研究报道较少, 污染状况尚不明晰. 不同地域地表水体微塑料丰度与人口密度、当地的国内生产总值都呈显著正相关(P < 0.05). 研究显示了我国地表水体微塑料的流域分布特征和生态风险, 可为地表水体微塑料污染防治提供科学依据.
关键词: 微塑料(MPs)      地表水体      流域分布      生态风险      胡焕庸线     
Basin Distribution and Ecological Risk of Microplastics in Surface Water Bodies in China
PAN Yu-long1,2,3 , ZHANG Chong-miao1,2,3,4     
1. School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2. Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China;
3. Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
4. International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract: To gain a comprehensive understanding of the distribution of microplastics in surface waters in China and clarify the related ecological risks, data of surface water bodies, such as rivers, lakes, reservoirs, and estuaries in China from 2014 to 2023 were collected, and the potential ecological risk index method was used to comprehensively evaluate the ecological risk of microplastics in surface water bodies of ten major basins in China. The results showed that the rivers, lakes, reservoirs, and estuaries in different basins of China were all polluted by microplastics. The main materials were polypropylene and polyethylene, mainly colorless transparent fibers and fragments, and the size was mostly < 1 mm, but the abundance of microplastics was significantly different. The median abundance of microplastics in the surface water of rivers, lakes, and estuaries in each basin ranged from 628 to 35 804, 1 to 4 738, and 869 to 792 100 items·m-3, respectively. The median abundance of microplastics in sediments ranged from 61 to 1 531, 19 to 1 236, and 120 to 1 228 items·kg-1, respectively. From the total potential ecological risk index (PERItot) of microplastics in rivers, the Haihe River Basin was at high ecological risk (level Ⅳ), while the Yellow River Basin and the Yangtze River Basin were at medium ecological risk (level Ⅲ). The majority of PERItot in the rivers of the Haihe River Basin came from polyurethane, with a highest contribution rate of 99.88%, while the main contributors to the PERItot of rivers and lakes in the Yellow River and the Yangtze River Basin and the PERItot of the surface water in the Yellow River Estuary were polyvinyl chloride and polystyrene, respectively. Microplastic pollution on the surface water bodies of the southeast side of HU Huan-yong Line was crucial, whereas a few research reports were available on microplastics in the surface water bodies on the northwest side, and the pollution status remained unclear. The abundance of microplastics in surface water bodies in different regions was significantly positively correlated with the population density and local gross domestic product (P < 0.05). The study shows the basin distribution characteristics and ecological risks of microplastics in surface water bodies in China, which can provide scientific basis for the prevention and control of microplastic pollution in surface water bodies.
Key words: microplastics (MPs)      surface water bodies      basin distribution      ecological risk      HU Huan-yong Line     

塑料制品广泛应用于日常生活和工农业生产中[1], 已成为人类社会不可或缺的重要部分. 塑料在给人类带来便捷的同时, 也造成了全球性污染问题. 英国普利茅斯大学的Thompson等[2]在2004年率先提出了“微塑料(microplastics, MPs)”这一概念, 并指出MPs污染的严峻性. 由于MPs在环境中的分布极为广泛, 且难以自然降解. 针对MPs污染及其毒性效应的研究已成为环境领域备受瞩目的焦点话题. 2022年, 国务院办公厅颁布了《新污染物治理行动方案》, 明确指出MPs是当前危害生态系统和人体健康的一种新污染物[3]. MPs已被列入我国生态环境部的重点管控新污染物清单, 加强对其监测和治理将是今后一项长期且重要的任务.

虽然MPs污染的问题最初是在海洋中发现的, 但污染源头在人类生活的陆地. 地表水与人类生活息息相关, 是MPs向海洋中迁移的重要介质[4], 研究地表水中MPs的赋存特征对于控制其生态风险十分重要. 我国是最大的塑料生产和使用国[5], 每年进入海洋的塑料垃圾高达882万t, 占全球总量的27.70%. 2014年, Zhao等[6]发表的关于长江口MPs污染的研究论文是我国第一篇有关地表水体的MPs污染报道, 随后我国地表水体中MPs污染研究陆续展开. 由于受到地区的经济水平、工农业发展程度和居民生活习惯等因素影响, 不同流域和地区地表水体中的MPs丰度、材质类型和尺寸分布等存在较大差异. 例如, 岷江四川成都段表层水中MPs平均丰度高达15 880 items·m-3[7], 而香港大埔区林村河表层水中MPs平均丰度却仅有7 items·m-3[8];安徽巢湖沉积物中的MPs材质以聚对苯二甲酸乙二醇酯(PET)为主[9], 而陕西黄金峡水库沉积物中的MPs材质以聚乙烯(PE)和聚苯乙烯(PS)为主[10]. 不同材质MPs对生物的毒性有差异[11], 这就意味着不同地区的地表水中MPs生态风险也有一定区别.

我国地域广大, 不同水体MPs污染的研究报道逐年增多. 但大多数研究局限性较强, 研究区域较为单一, 主要集中在长江和珠江流域, 缺乏对我国地表水体MPs污染状况的全面分析. Fan等[12]综述了我国内陆水系MPs的污染特征, 但由于收集的数据有限, 未能体现出我国各流域的MPs分布特征. 此外, 目前大多数研究仅阐明了水体中MPs的丰度, 而对其造成的生态风险鲜见报道[13].

鉴于此, 本文通过收集整理我国河流、湖库及河口等地表水体中MPs污染的数据, 旨在从流域尺度分析我国地表水体中MPs污染的分布状况及其潜在生态风险, 并探讨地表水体MPs污染与人口、经济的关系, 以期为我国地表水体MPs的污染防治提供科学依据.

1 材料与方法 1.1 数据来源和研究区域

使用Web of Science和中国知网等数据库检索2014~2023年间发表的有关我国地表水体MPs污染的文献, 共涉及117个地表水体, 包括77个河流, 31个湖库和9个河口水体, 其中地表水体表层水介质研究样本量为99, 沉积物介质研究样本量为72. MPs的截留收集通过滤膜过滤实现, 过滤孔径大多为0.45 μm;MPs的鉴定方法有傅里叶红外光谱法(Fourier transform infrared spectroscopy, FTIR)、显微傅里叶红外光谱法(micro-Fourier transform infrared spectroscopy, Micro-FTIR)、衰减全反射傅里叶红外光谱法(attenuated total reflection Fourier transform infrared spectroscopy, ATR-FTIR)和拉曼光谱法(Raman spectroscopy, Raman). MPs污染数据信息包含MPs的丰度(以平均值计)、材质、形状、尺寸和颜色. 为了便于比较, 将表层水和沉积物的MPs丰度单位分别用items·m-3和items·kg-1表示.

按照数据来源的地理位置归入我国的十大流域(松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河)进行比较分析. 依据“胡焕庸线”将我国分成东南部和西北部两大区域, 比较分析地表水体MPs污染特征. 地表水体MPs污染数据样本点和研究区域分布状况如图 1所示.

基于2021年《中国水资源公报》[14]公布的GS京(2022)0112号标准地图制作, 底图无修改 图 1 我国地表水体MPs污染数据样本点和研究区域 Fig. 1 Data sample points and study area of MPs pollution in surface water bodies in China

1.2 生态风险评价

采用潜在生态风险指数法(potential ecological risk index, PERI)[15,16], 对我国地表水体中的MPs污染生态风险等级进行评价, 计算公式如下:

式中, k表示MPs材质类型, 具体如表 1所示;Tk 表示塑料材质k的化学毒性系数;Pk 表示塑料材质k占该水体中报道的全部材质MPs的比例, 依据所归纳水体主要材质MPs的出现频次计算;Sk 表示塑料材质k的危害分数[11], 具体数值见表 1Ci 表示MPs丰度;C0表示安全参考丰度, 其中, 表层水MPs安全参考丰度[17]:6 650 items·m-3, 沉积物MPs安全参考丰度[18]:540 items·kg-1;PERI k 和PERItot分别表示材质k MPs的潜在生态风险指数和该水体全部材质MPs的总潜在生态风险指数;材质k的MPs潜在生态风险指数对总潜在生态风险指数的贡献率使用PERI k 与PERItot的比值来表示.

表 1 常见塑料材质类型及其危害分数1) Table 1 Common plastic material types and their hazard scores

依据MPs潜在生态风险分级标准[16]和计算出的PERI值, 可将我国各流域地表水体MPs生态风险等级分为:Ⅰ级(PERI < 10, 无显著风险)、Ⅱ级(10≤PERI < 100, 低生态风险)、Ⅲ级(100≤PERI < 1 000, 中生态风险)和Ⅳ级(1 000≤PERI < 10 000, 高生态风险).

1.3 统计分析

本研究通过Microsoft Excel 2010统计整理数据;利用Origin 2019b绘制相关图表;使用ArcGIS 10.8绘制我国地表水体MPs研究点位分布图;利用SPSS 22.0分别进行了不同类型湖库MPs丰度的独立样本t检验、地表水体MPs丰度与人口密度和GDP总量的Spearman相关性分析和Pearson线性回归分析.

2 结果与讨论 2.1 我国地表水体中的微塑料分布状况 2.1.1 河流中的微塑料丰度及材质类型

在所有地表水体MPs研究中, 有关河流的研究最多[7,8,15,16,19~98]. 如图 2所示, 我国各流域河流表层水中MPs丰度范围为1~595 270 items·m-3, MPs丰度最高点位于黄河平安浮桥至新滩浮桥段[28], 最低点则在大风江钦州段[80]. 由于MPs丰度跨度极大, 使用中位值能够较好地反映出各流域MPs的分布特征. 松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河的河流表层水中MPs丰度中位值分别为35 804、4 630、2 357、2 000、7 735、6 500、1 285、2 150、628和17 639 items·m-3. 显然, 松花江流域河流表层水中MPs丰度中位值最高, 而西南诸河的最低.

(a)表层水MPs丰度, (b)沉积物MPs丰度, (c)表层水MPs材质, (d)沉积物MPs材质 图 2 我国不同流域河流中MPs的丰度与材质分布 Fig. 2 Abundance and material distribution of MPs in rivers of different basins in China

各流域河流沉积物中MPs丰度范围为17~32 947 items·kg-1, 最高值和最低值分别位于温瑞塘河[83]和灞河[33]. 松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河的河流沉积物中MPs丰度中位值分别为1 531、204、983、240、324、402、685、670、83和61 items·kg-1;松花江流域的河流沉积物MPs丰度中位值同样为最高, 海河流域则次之.

我国大多数流域河流表层水和沉积物中的MPs材质类型主要是PP、PE和PET, 这些材质的高适用性和工业相关性是它们大量存在的原因. 然而, 在海河流域河流表层水和沉积物中, MPs主要材质类型则为PU和EVA, 占比均在39.90%以上. PU、EVA塑料材质常用于建筑胶体、道路标记涂料、车辆零部件和电线电缆等[22]. 海河流域河流中这两类材质的MPs占比如此之高, 推测可能与京津冀地区大型工业基地的生产活动有密切关系[99]. 长江流域和东南诸河的MPs材质类型十分多样, 表明这些流域MPs污染来源复杂, 可能与产业类型多样化有关.

2.1.2 湖库中的微塑料丰度及材质类型

从现有报道来看, 我国湖库MPs研究涉及松花江、海河、淮河、黄河、长江、珠江、西北诸河等流域[9,10,18,100~133], 以长江流域湖库研究最多. 如图 3所示, 我国各流域的湖库表层水中, MPs丰度中位值介于1~4 738 items·m-3范围内, 最高值和最低值分别出现在长江流域和珠江流域, 与河流表层水趋势明显不同. 位于黄浦江上游的金泽水库[45]表层水中的MPs丰度最高, 达28 300 items·m-3, 而表层水MPs丰度最低值位于飞来峡水库[130], 仅有1 items·m-3. 我国各流域湖库沉积物中, MPs丰度中位值介于19~1 236 items·kg-1之间. 海河流域的MPs丰度中位值最高, 而黄河流域的MPs丰度中位值最低. 草海湖[128]沉积物中MPs丰度最高, 达3 285 items·kg-1;而乌梁素海[103]沉积物中MPs丰度最低, 仅19 items·kg-1.

(a)表层水MPs丰度, (b)沉积物MPs丰度, (c)表层水MPs材质, (d)沉积物MPs材质, (e)表层水MPs平均丰度, (f)沉积物MPs平均丰度;ns表示无显著性差异 图 3 我国湖库中MPs的丰度与材质分布 Fig. 3 Abundance and material distribution of MPs in lakes and reservoirs in China

与河流MPs污染情况类似, PP、PE和PET也是我国大部分流域湖库中MPs的主要材质. 在松花江流域、淮河流域和西北诸河, PA材质MPs也比较多. PA具有轻便、耐磨的特点, 广泛用于包装材料、运动鞋袜、渔具等, 各流域湖库中的PA材质MPs, 可能主要来源于当地渔业和旅游活动产生的断线和碎片[100]. 除PA外, PE和PET亦为淮河流域湖库中MPs的主要材质, 这可能与流域内农田种植活动覆盖所用的PE薄膜[134]以及服装生产所需的PET纤维[135]的广泛使用和传播有关. 珠江流域湖库沉积物中的MPs, PP、PET和RA为最主要的3种材质, RA材质MPs较多可能与珠三角地区高度发达的纺织产业有关[70,131].

按上游是否有航运河道, 对各流域的湖库进行了归类, 并对其MPs丰度进行了独立样本t检验. 结果发现, 上游有航运河道的湖库表层水和沉积物中MPs丰度与上游无航运河道的湖库无显著性差异(表层水P=0.578 > 0.05, 沉积物P=0.249 > 0.05), 说明航运可能不是影响湖库中MPs分布的主要因素, 其分布可能受地表径流、降水、面源污染等其他因素影响.

2.1.3 入海河口中的微塑料丰度及材质类型

我国入海河口MPs研究并不多[6,136~144], 涉及辽河、海河、黄河、长江、珠江、东南诸河流域. 从图 4可以看出, 入海河口表层水和沉积物中的MPs丰度中位值范围分别为869~792 100 items·m-3和120~1 228 items·kg-1. 黄河口表层水[28]和长江口沉积物[138,140,141]中的MPs丰度中位值显著高于其他入海河口. 位于珠江流域内的大风江口[80]MPs污染程度最轻, 其表层水和沉积物中MPs丰度分别为1 items·m-3和13 items·kg-1. PP和PE是入海河口中MPs的主要材质类型. 相较于其他流域, 珠江流域河口沉积物MPs材质同湖库沉积物趋势相近, 在表层水和沉积物中PP、PE、PET和RA的占比均在16%以上, MPs材质类型呈现多样化, 这可能归因于流域内珠三角地区高度发达的经济产业和密集的人口[74]. 由于河口处于河流与海洋的交汇处, 湍流和盐度变化可能会促使吸附电中和、混凝等环境化学作用的发生, 进而加速PE等较低密度MPs的聚集和沉降[145].

(a)表层水MPs丰度, (b)沉积物MPs丰度, (c)表层水MPs材质, (d)沉积物MPs材质 图 4 我国不同流域入海河口中MPs的丰度与材质分布 Fig. 4 Abundance and material distribution of MPs in estuaries of different basins in China

2.2 我国地表水体中的微塑料生态风险评价 2.2.1 河流中的微塑料生态风险

图 5所示, 我国松花江流域、辽河流域、海河流域、淮河流域、黄河流域、长江流域、珠江流域、东南诸河、西南诸河和西北诸河的河流表层水中PERItot值分别为32.30、7.66、1 048.92、1.60、695.25、233.59、1.69、264.57、0.57和11.27;上述流域河流沉积物中PERItot值分别为17.01、4.16、6 729.00、2.37、639.00、251.41、8.88、7.86、1.92和0.68. 显而易见, 海河流域河流表层水和沉积物中的PERItot均为最高, 而河流表层水和沉积物的PERItot最低值分别出现在西南诸河和西北诸河.

(a)表层水, (b)沉积物;灰色区域表示无数据 图 5 我国不同流域河流中的MPs生态风险评估 Fig. 5 Ecological risk assessment of MPs in rivers of different basins in China

从河流表层水MPs生态风险等级来看, 处于无显著风险(Ⅰ级)有辽河、淮河、珠江流域及西南诸河, 处于低生态风险(Ⅱ级)的有松花江流域和西北诸河, 处于中生态风险(Ⅲ级)的有黄河、长江流域及东南诸河;仅有海河流域处于高生态风险(Ⅳ级). 大多数流域河流沉积物MPs生态风险等级与表层水风险等级一致, 唯有海河流域处于高生态风险(Ⅳ级). 东南诸河和西北诸河的沉积物MPs风险等级都低于其表层水风险等级. 相较于表层水, 沉积物MPs的研究报道偏少, 样本量有限. 从检测技术的角度上看, 沉积物中的MPs检测难度大, 容易漏检, 这可能导致MPs的PERItot值偏低.

分析不同材质MPs的PERI值可以发现, 黄河、长江流域及东南诸河河流表层水中的PERIPVC值都很高, PVC材质的MPs对PERItot值的贡献率分别达到98.07%、96.09%和99.18%;黄河和长江流域河流沉积物中PVC同样是PERItot的主要贡献者. 与之不同的是, 海河流域河流表层水和沉积物中的PERItot值则主要来自PU的贡献, 贡献率分别高达99.80%和99.88%. 由此可见, 不同流域中对生态风险高贡献的MPs材质类型可能有差异. 明确各流域中最大生态风险的MPs材质类型, 对于MPs风险管控具有重要意义.

2.2.2 湖库中的微塑料生态风险

我国各流域湖库表层水MPs的PERItot值介于9.02×10-4~204.16之间, 湖库沉积物中MPs的PERItot值范围为0.26~429.12, 最高值都出现在长江流域(图 6). 黄河、珠江流域及西北诸河湖库均处于无显著风险(Ⅰ级), 松花江流域湖库表层水及淮河流域湖库沉积物处于低生态风险(Ⅱ级), 长江流域湖库表层水和沉积物MPs生态风险则均处于中生态风险(Ⅲ级).

(a)表层水, (b)沉积物;灰色区域表示无数据 图 6 我国不同流域湖库中的MPs生态风险评估 Fig. 6 Ecological risk assessment of MPs in lakes and reservoirs of different basins in China

值得注意的是, 长江流域湖库表层水和沉积物中的PERItot值绝大部分仍由PVC贡献, 贡献率分别达96.90%和97.08%, 太湖流域PVC材质MPs的污染尤为严重[113,114]. 最新研究表明, 有害蓝藻的分布可能会受MPs影响[146], 这就意味着湖库中的MPs可能会与有害蓝藻形成复合效应, 带来更为复杂的风险, 因此应特别重视湖库中PVC材质MPs的风险控制.

2.2.3 入海河口中的微塑料生态风险

我国各入海河口表层水中的PERItot值范围分别为0.75~1 667.58, 而河口沉积物的PERItot值则整体偏低, 介于2.24~3.91. 从图 7可知, 大部分入海河口表层水和全部沉积物中的MPs都处于无显著风险(Ⅰ级), 而黄河入海口表层水处于高生态风险(Ⅳ级). 其PERItot值主要由PS和PE贡献, 贡献率分别为71.43%和26.19%.

(a)表层水, (b)沉积物;灰色区域表示无数据 图 7 我国不同流域入海河口中的MPs生态风险评估 Fig. 7 Ecological risk assessment of MPs in estuaries of different basins in China

2.3 我国地表水体中微塑料的地域污染特征 2.3.1 微塑料的地域分布特征

胡焕庸线是我国人口发展水平和经济社会格局的重要分界线, 其东南侧人口密度大, 经济发达, 西北侧人口密度小, 经济欠发达. 胡焕庸线两侧地表水体中MPs的分布特征如图 8所示.

(a)丰度特征, (b)材质特征, (c)形状特征, (d)尺寸特征, (e)颜色特征;SE-w表示东南部表层水, SE-s表示东南部沉积物, NW-w表示西北部表层水, NW-s表示西北部沉积物 图 8 我国地表水体中MPs的地域分布特征 Fig. 8 Regional distribution characteristics of MPs in surface water in China

胡焕庸线东南侧和西北侧地表水体表层水MPs丰度中位值分别为3 158 items·m-3和1 292 items·m-3, 沉积物MPs丰度中位值分别为523 items·kg-1和61 items·kg-1, 可见胡焕庸线东南侧地表水体MPs污染相对更严重. 胡焕庸线两侧地表水体中MPs材质类型近似, 主要材质均为PP和PE, 这二者占比之和均不低于60.92%;MPs形状以纤维和碎片为主, 二者占比之和均在83.30%以上;透明的MPs占比均在37%以上;MPs尺寸大都在1 mm以下, 其占比均在72.70%以上. 以上也是我国地表水体MPs赋存的共性特征. 对于西北侧地表水MPs研究十分欠缺, 相关文献量仅为东南侧的1/7. 今后应逐步加强胡焕庸线西北侧地表水体MPs研究, 以期全面了解我国地表水体MPs污染状况. 不同地域地表水体中MPs的丰度特征存在差异, 这可能与地域的人口密度与经济发展等因素[118]有关.

2.3.2 微塑料的地域赋存影响因素

利用Spearman等级相关系数法对我国部分典型地表水体MPs丰度与相关地区的人口密度、国内生产总值(GDP)总量进行了相关性统计分析. 收集整理的我国部分地表水体MPs丰度、对应地域人口密度和GDP总量数据见表 2. 回归分析结果如图 9所示. 人口密度和GDP总量数据信息来源于国家统计局.

表 2 部分地表水体MPs丰度、地域人口密度及GDP总量 Table 2 Abundance of MPs in some surface waters, regional population density, and total GDP

图 9 MPs丰度与人口密度和GDP总量的回归分析 Fig. 9 Regression analysis of MPs abundance with population density and total GDP

本研究结果发现, 我国地表水体MPs丰度与地域人口密度呈显著正相关(P=0.002 < 0.05), 与地域GDP总量亦呈显著正相关(P=0.000 < 0.05), 且MPs丰度与人口密度的相关性弱于与GDP总量的相关性. 李思琼等[16]针对长江流域MPs污染开展的研究也获得了相似的结果. 这表明, 尽管地表水体中MPs的分布受到水流搬运等迁移作用的影响, 但当地的人类活动和经济发展水平还是其丰度的决定性因素.

3 结论

(1)我国地表水体中MPs的主要材质为PP和PE, 以透明的纤维和碎片为主, 尺寸大都在1 mm以下. 各流域河流、湖库和入海河口表层水中的MPs丰度中位值范围分别为628~35 804、1~4 738和869~792 100 items·m-3;沉积物中的MPs丰度中位值范围分别为61~1 531、19~1 236和120~1 228 items·kg-1.

(2)海河流域的河流MPs生态风险最高(Ⅳ级), 主要由PU贡献. 黄河流域和长江流域的河流处于中生态风险(Ⅲ级), 长江流域湖库的MPs生态风险为Ⅲ级, 其主要贡献材质均为PVC. 黄河流域入海河口表层水MPs生态风险为Ⅳ级, 主要由PS贡献.

(3)胡焕庸线东南侧地表水体表层水和沉积物中的MPs含量都明显高于西北侧, 西北侧地表水体MPs的研究报道较少. 地表水体MPs丰度与人口密度、GDP总量均呈显著正相关.

参考文献
[1] Derraik J G B. The pollution of the marine environment by plastic debris: a review[J]. Marine Pollution Bulletin, 2002, 44(9): 842-852. DOI:10.1016/S0025-326X(02)00220-5
[2] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. DOI:10.1126/science.1094559
[3] 中华人民共和国国务院办公厅. 新污染物治理行动方案[R]. 北京: 国务院办公厅, 2022.
[4] Rochman C M. Microplastics research - from sink to source: microplastics are ubiquitous not just in the ocean but also on land and in freshwater systems[J]. Science, 2018, 360(6384): 28-29. DOI:10.1126/science.aar7734
[5] Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771. DOI:10.1126/science.1260352
[6] Zhao S Y, Zhu L X, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1-2): 562-568. DOI:10.1016/j.marpolbul.2014.06.032
[7] Li X T, Liang R F, Li Y, et al. Microplastics in inland freshwater environments with different regional functions: a case study on the Chengdu Plain[J]. Science of the Total Environment, 2021, 789. DOI:10.1016/j.scitotenv.2021.147938
[8] Cheung P K, Hung P L, Fok L. River microplastic contamination and dynamics upon a rainfall event in Hong Kong, China[J]. Environmental Processes, 2019, 6(1): 253-264. DOI:10.1007/s40710-018-0345-0
[9] Liu H T, Sun K X, Liu X Y, et al. Spatial and temporal distributions of microplastics and their macroscopic relationship with algal blooms in Chaohu Lake, China[J]. Journal of Contaminant Hydrology, 2022, 248. DOI:10.1016/j.jconhyd.2022.104028
[10] Li C C, Gan Y D, Dong J Y, et al. Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China[J]. Chemosphere, 2020, 253. DOI:10.1016/j.chemosphere.2020.126740
[11] Lithner D, Larsson Å, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18): 3309-3324. DOI:10.1016/j.scitotenv.2011.04.038
[12] Fan J X, Zou L, Duan T, et al. Occurrence and distribution of microplastics in surface water and sediments in China's inland water systems: a critical review[J]. Journal of Cleaner Production, 2022, 331. DOI:10.1016/j.jclepro.2021.129968
[13] 孙晓楠, 陈浩, 贾其隆, 等. 我国陆域水体系统表层水中微塑料生态风险评估[J]. 环境科学, 2022, 43(11): 5040-5052.
Sun X N, Chen H, Jia Q L, et al. Ecological risk assessment of microplastics occurring in surface water of terrestrial water systems across China[J]. Environmental Science, 2022, 43(11): 5040-5052.
[14] 中华人民共和国水利部. 中国水资源公报2021[M]. 北京: 中国水利水电出版社, 2022.
[15] Peng G Y, Xu P, Zhu B S, et al. Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities[J]. Environmental Pollution, 2018, 234: 448-456. DOI:10.1016/j.envpol.2017.11.034
[16] 李思琼, 王华, 储林佑, 等. 长江流域微塑料污染特征及生态风险评价[J]. 环境科学, 2024, 45(3): 1439-1447.
Li S Q, Wang H, Chu L Y, et al. Pollution characteristics and ecological risk assessment of microplastics in the Yangtze River Basin[J]. Environmental Science, 2024, 45(3): 1439-1447.
[17] Everaert G, Van Cauwenberghe L, De Rijcke M, et al. Risk assessment of microplastics in the ocean: modelling approach and first conclusions[J]. Environmental Pollution, 2018, 242: 1930-1938. DOI:10.1016/j.envpol.2018.07.069
[18] Shi M M, Zhu J X, Hu T P, et al. Occurrence, distribution and risk assessment of microplastics and polycyclic aromatic hydrocarbons in East lake, Hubei, China[J]. Chemosphere, 2023, 316. DOI:10.1016/j.chemosphere.2023.137864
[19] 李昀东. 哈尔滨城市内河中微塑料赋存特征、源解析及环境影响因素[D]. 哈尔滨: 哈尔滨师范大学, 2022.
Li Y D. Occurrence characteristics, source apportionment and environmental influencing factors of microplastics in the urban rivers of Harbin[D]. Harbin: Harbin Normal University, 2022.
[20] Xu Q J, Xing R L, Sun M D, et al. Microplastics in sediments from an interconnected river-estuary region[J]. Science of the Total Environment, 2020, 729. DOI:10.1016/j.scitotenv.2020.139025
[21] 李江南, 凌玮, 沈茜, 等. 双台子河与大辽河表层水体微塑料特征与分布研究[J]. 生态毒理学报, 2021, 16(3): 192-199.
Li J N, Ling W, Shen Q, et al. Characteristics and distribution of microplastics in surface water from Shuangtaizi River and Daliao River[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 192-199.
[22] 胡嘉敏, 左剑恶, 李頔, 等. 北京城市河流河水和沉积物中微塑料的组成与分布[J]. 环境科学, 2021, 42(11): 5275-5283.
Hu J M, Zuo J E, Li D, et al. Composition and distribution of microplastics in the water and sediments of urban rivers in Beijing[J]. Environmental Science, 2021, 42(11): 5275-5283.
[23] Liu Y, Zhang J D, Cai C Y, et al. Occurrence and characteristics of microplastics in the Haihe River: an investigation of a seagoing river flowing through a megacity in northern China[J]. Environmental Pollution, 2020, 262. DOI:10.1016/j.envpol.2020.114261
[24] 单世伟. 白洋淀及上游河流水环境和鱼类体内微塑料分布研究[D]. 保定: 河北大学, 2021.
Shan S W. Distribution of microplastics in aquatic environment and fish body of the Baiyang Lake and its upstream rivers[D]. Baoding: Hebei University, 2021.
[25] 张鹏举, 蓝洁, 张凯璇, 等. 大沽河流域微塑料在不同介质中的空间分布及其潜在来源探究[J]. 环境化学, 2023, 42(12): 4093-4103.
Zhang P J, Lan J, Zhang K X, et al. Spatial distribution and potential sources of microplastics in different media of Dagu River basin[J]. Environmental Chemistry, 2023, 42(12): 4093-4103. DOI:10.7524/j.issn.0254-6108.2022052607
[26] Han M, Niu X R, Tang M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707. DOI:10.1016/j.scitotenv.2019.135601
[27] 龚喜龙, 张道勇, 潘响亮. 黄河沉积物微塑料污染和表征[J]. 干旱区研究, 2020, 37(3): 790-798.
Gong X L, Zhang D Y, Pan X L. Pollution and characterization of microplastics in the sediments of the Yellow River[J]. Arid Zone Research, 2020, 37(3): 790-798.
[28] 牛学锐. 黄河口表层水微塑料赋存特征研究[D]. 济南: 山东师范大学, 2020.
Niu X R. Study on the occurrence characteristics of microplastics in the surface water of the Yellow River Estuary[D]. Ji'nan: Shandong Normal University, 2020.
[29] Ding L, Mao R F, Guo X T, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China[J]. Science of the Total Environment, 2019, 667: 427-434. DOI:10.1016/j.scitotenv.2019.02.332
[30] 山泽萱. 渭河关中段地表水微塑料污染现状与风险评价[D]. 西安: 西北大学, 2022.
Shan Z X. The current situation and risk assessment of microplastics pollution in surface water of Weihe River in Guanzhong Section[D]. Xi'an: Northwest University, 2022.
[31] 王昱丹, 桂维振, 邵天杰, 等. 无定河上游流域水体微塑料污染现状与分布特征[J]. 中国环境科学, 2023, 43(10): 5583-5590.
Wang Y D, Gui W Z, Shao T J, et al. Water microplastics pollution and distribution characteristics in the upper Wuding River Basin[J]. China Environmental Science, 2023, 43(10): 5583-5590. DOI:10.3969/j.issn.1000-6923.2023.10.055
[32] 武帆, 张峰, 刘晓琎, 等. 河道综合治理后城市水体沉积物中微塑料污染特征研究——以汾河太原城区段为例[J]. 环境污染与防治, 2022, 44(1): 61-66.
Wu F, Zhang F, Liu X J, et al. Study on the characteristics of microplastics pollution in urban water sediments after comprehensive regulation of rivers: taking the Taiyuan section of Fenhe River as an example[J]. Environmental Pollution and Control, 2022, 44(1): 61-66.
[33] 黄毅, 武军旭, 米峰江, 等. 西安城区灞河河段微塑料的分离及其表面形貌特征[J]. 净水技术, 2022, 41(11): 137-143.
Huang Y, Wu J X, Mi F J, et al. Separation and surface morphological characteristics of microplastics in urban reaches of Bahe River in Xi'an City[J]. Water Purification Technology, 2022, 41(11): 137-143.
[34] Xiong X, Wu C X, Elser J J, et al. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River - From inland to the sea[J]. Science of the Total Environment, 2019, 659: 66-73. DOI:10.1016/j.scitotenv.2018.12.313
[35] Fan J X, Zou L, Zhao G L. Microplastic abundance, distribution, and composition in the surface water and sediments of the Yangtze River along Chongqing City, China[J]. Journal of Soils and Sediments, 2021, 21(4): 1840-1851. DOI:10.1007/s11368-021-02902-5
[36] 胡隆腾. 长江重庆段微塑料的分布特征及其在鲢鱼体内的累积效应研究[D]. 重庆: 重庆交通大学, 2022.
Hu L T. Distribution characteristics of microplastics in the Chongqing section of the Yangtze River and their cumulative effect in silver carp[D]. Chongqing: Chongqing Jiaotong University, 2022.
[37] 张胜, 潘雄, 林莉, 等. 长江源区水体微塑料组成及分布特征初探[J]. 长江科学院院报, 2021, 38(4): 12-18.
Zhang S, Pan X, Lin L, et al. Preliminary study on composition and distribution characteristics of microplastics in water from the source region of Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4): 12-18.
[38] Yuan W K, Christie-Oleza J A, Xu E G, et al. Environmental fate of microplastics in the world's third-largest river: basin-wide investigation and microplastic community analysis[J]. Water Research, 2022, 210. DOI:10.1016/j.watres.2021.118002
[39] Wang W F, Ndungu A W, Li Z, et al. Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1369-1374. DOI:10.1016/j.scitotenv.2016.09.213
[40] 孙楠. 赣江流域赣州城区段水体微塑料的分布特征研究[D]. 赣州: 江西理工大学, 2022.
Sun N. Distribution of microplastics in water bodies of urban Ganzhou in source of Ganjiang River Basin[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
[41] 吕雅宁. 赣江水和沉积物体系中微塑料的污染研究[D]. 曲阜: 曲阜师范大学, 2020.
[42] Hu H, Jin D F, Yang Y Y, et al. Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level[J]. Environmental Research, 2021, 200. DOI:10.1016/j.envres.2021.111363
[43] 申茂才. 湘江水体中微塑料的污染特征和载体效应及去除机理研究[D]. 长沙: 湖南大学, 2022.
Shen M C. Research on abundance, vector effect and removal of microplastics in freshwater from Xiangjiang River[D]. Changsha: Hunan University, 2022.
[44] Yin L S, Wen X F, Huang D L, et al. Abundance, characteristics, and distribution of microplastics in the Xiangjiang river, China[J]. Gondwana Research, 2022, 107: 123-133. DOI:10.1016/j.gr.2022.01.019
[45] Chen H, Jia Q L, Zhao X, et al. The occurrence of microplastics in water bodies in urban agglomerations: impacts of drainage system overflow in wet weather, catchment land-uses, and environmental management practices[J]. Water Research, 2020, 183. DOI:10.1016/j.watres.2020.116073
[46] 赵昕, 陈浩, 贾其隆, 等. 城市河道表层水及沉积物中微塑料的污染现状与污染行为[J]. 环境科学, 2020, 41(8): 3612-3620.
Zhao X, Chen H, Jia Q L, et al. Pollution status and pollution behavior of microplastic in surface water and sediment of urban rivers[J]. Environmental Science, 2020, 41(8): 3612-3620.
[47] 郑亮, 刘一萌, 李晓辰, 等. 上海市松江地区河道微塑料分布特征[J]. 海洋渔业, 2021, 43(2): 241-246.
Zheng L, Liu Y M, Li X C, et al. Distribution characteristics of microplastics in urban rivers of Songjiang District, Shanghai[J]. Marine Fisheries, 2021, 43(2): 241-246. DOI:10.3969/j.issn.1004-2490.2021.02.013
[48] Luo W Y, Su L, Craig N J, et al. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters[J]. Environmental Pollution, 2019, 246: 174-182. DOI:10.1016/j.envpol.2018.11.081
[49] 罗文雅. 长三角地区不同水域环境中微塑料污染特征研究[D]. 上海: 华东师范大学, 2019.
Luo W Y. Microplastic pollution in different waters from Yangtze River Delta, China[D]. Shanghai: East China Normal University, 2019.
[50] 陈圣盛, 李卫明, 张坤, 等. 香溪河流域微塑料的分布特征及其迁移规律分析[J]. 环境科学, 2022, 43(6): 3077-3087.
Chen S S, Li W M, Zhang K, et al. Distribution characteristics of microplastics and their migration patterns in Xiangxi River Basin[J]. Environmental Science, 2022, 43(6): 3077-3087.
[51] 许万璐, 范一凡, 钱新. 典型城市河网沉积物微塑料时空分布特征[J]. 环境科学, 2024, 45(4): 2142-2149.
Xu W L, Fan Y F, Qian X. Spatial and temporal distribution of microplastics in the sediments of typical urban river network[J]. Environmental Science, 2024, 45(4): 2142-2149.
[52] Fan Y F, Zheng J L, Deng L G, et al. Spatiotemporal dynamics of microplastics in an urban river network area[J]. Water Research, 2022, 212. DOI:10.1016/j.watres.2022.118116
[53] Li Y B, Lu Z B, Zheng H Y, et al. Microplastics in surface water and sediments of Chongming Island in the Yangtze Estuary, China[J]. Environmental Sciences Europe, 2020, 32(1): 15. DOI:10.1186/s12302-020-0297-7
[54] Rao Z, Niu S P, Zhan N, et al. Microplastics in sediments of River Yongfeng from Maanshan City, Anhui Province, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(2): 166-172. DOI:10.1007/s00128-019-02771-2
[55] Liu S L, Jian M F, Zhou L Y, et al. Distribution and characteristics of microplastics in the sediments of Poyang Lake, China[J]. Water Science & Technology, 2019, 79(10): 1868-1877.
[56] 周隆胤, 简敏菲, 余厚平, 等. 乐安河—鄱阳湖段底泥微塑料的分布特征及其来源[J]. 土壤学报, 2018, 55(5): 1222-1232.
Zhou L Y, Jian M F, Yu H P, et al. Distribution of microplastics and its source in the sediments of the Le'an River in Poyang Lake[J]. Acta Pedologica Sinica, 2018, 55(5): 1222-1232.
[57] 简敏菲, 周隆胤, 余厚平, 等. 鄱阳湖-饶河入湖段湿地底泥中微塑料的分离及其表面形貌特征[J]. 环境科学学报, 2018, 38(2): 579-586.
Jian M F, Zhou L Y, Yu H P, et al. Separation and microscopic study of microplastics from the sediments of the wetland in the estuary of Raohe River of Poyang Lake[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 579-586.
[58] Zhou G Y, Wang Q G, Zhang J, et al. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China[J]. Environmental Research, 2020, 189. DOI:10.1016/j.envres.2020.109893
[59] Li J L, Ouyang Z Z, Liu P, et al. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2021.145591
[60] Mao Y F, Li H, Gu W K, et al. Distribution and characteristics of microplastics in the Yulin River, China: Role of environmental and spatial factors[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.115033
[61] Hu L L, Chernick M, Hinton D E, et al. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China[J]. Environmental Science & Technology, 2018, 52(15): 8885-8893.
[62] 高雅坤, 李卫明, 张续同, 等. 玛瑙河多环境介质和铜锈环棱螺体内微塑料的赋存特征[J]. 环境科学, 2024, 45(3): 1849-1858.
Gao Y K, Li W M, Zhang X T, et al. Occurrence characteristics of microplastics in multi-environmental media and Bellamya aeruginosa of Manao River[J]. Environmental Science, 2024, 45(3): 1849-1858.
[63] 叶秋霞. 南京城市典型水体中微塑料污染特征分析[J]. 能源环境保护, 2020, 34(5): 79-83.
Ye Q X. Characteristics of micro-plastic pollution in Nanjing urban waters[J]. Energy Environmental Protection, 2020, 34(5): 79-83.
[64] 程伟彬, 何成达, 朱腾义, 等. 扬州市城区水体微塑料赋存特征及生态风险分析[J]. 环境科学与技术, 2023, 46(5): 223-228.
Cheng W B, He C D, Zhu T Y, et al. Occurrence characteristics and ecological risk analysis of microplastics in urban waters of Yangzhou City[J]. Environmental Science & Technology, 2023, 46(5): 223-228.
[65] Zhang Y T, Peng Y T, Xu S Z, et al. Distribution characteristics of microplastics in urban rivers in Chengdu City: the influence of land-use type and population and related suggestions[J]. Science of the Total Environment, 2022, 846. DOI:10.1016/j.scitotenv.2022.157411
[66] 陈子威. 合肥市典型水环境微塑料污染分布特征及治理策略研究[D]. 合肥: 安徽建筑大学, 2022.
Chen Z W. Investigation on distribution characteristics and treatment strategies of microplastics pollution in typical water environment of Hefei City[D]. Hefei: Anhui Jianzhu University, 2022.
[67] 周刚. 微塑料在淀山湖及太浦河流域的污染负荷、赋存特征和生态风险评价[D]. 上海: 东华大学, 2022.
Zhou G. Distribution, composition and ecological risks of microplastics pollution in the watershed water of Dianshan Lake and Taipu River[D]. Shanghai: Donghua University, 2022.
[68] Zhang L S, Liu J Y, Xie Y S, et al. Distribution of microplastics in surface water and sediments of Qin river in Beibu Gulf, China[J]. Science of the Total Environment, 2020, 708. DOI:10.1016/j.scitotenv.2019.135176
[69] Fan Y J, Zheng K, Zhu Z W, et al. Distribution, sedimentary record, and persistence of microplastics in the Pearl River catchment, China[J]. Environmental Pollution, 2019, 251: 862-870. DOI:10.1016/j.envpol.2019.05.056
[70] Li Y Z, Zhang Y D, Chen G L, et al. Microplastics in surface waters and sediments from Guangdong Coastal Areas, South China[J]. Sustainability, 2021, 13(5). DOI:10.3390/su13052691
[71] Wang J D, Peng J P, Tan Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171: 248-258. DOI:10.1016/j.chemosphere.2016.12.074
[72] Zhang X, Leng Y F, Liu X N, et al. Microplastics' pollution and risk assessment in an urban river: a case study in the Yongjiang River, Nanning City, South China[J]. Exposure and Health, 2020, 12(2): 141-151. DOI:10.1007/s12403-018-00296-3
[73] Wu P F, Tang Y Y, Dang M, et al. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science of the Total Environment, 2020, 717. DOI:10.1016/j.scitotenv.2019.135187
[74] Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River estuary, China[J]. Chemosphere, 2019, 217: 879-886. DOI:10.1016/j.chemosphere.2018.11.093
[75] Lin L, Zuo L Z, Peng J P, et al. Occurrence and distribution of microplastics in an urban river: a case study in the Pearl River along Guangzhou City, China[J]. Science of the Total Environment, 2018, 644: 375-381. DOI:10.1016/j.scitotenv.2018.06.327
[76] Huang D F, Li X Y, Ouyang Z Z, et al. The occurrence and abundance of microplastics in surface water and sediment of the West River downstream, in the south of China[J]. Science of the Total Environment, 2021, 756. DOI:10.1016/j.scitotenv.2020.143857
[77] Xue B M, Zhang L L, Li R L, et al. Underestimated microplastic pollution derived from fishery activities and "hidden" in deep sediment[J]. Environmental Science & Technology, 2020, 54(4): 2210-2217.
[78] Cheung P K, Fok L, Hung P L, et al. Spatio-temporal comparison of neustonic microplastic density in Hong Kong waters under the influence of the Pearl River Estuary[J]. Science of the Total Environment, 2018, 628-629: 731-739. DOI:10.1016/j.scitotenv.2018.01.338
[79] Shu X H, Xu L Z, Yang M H, et al. Spatial distribution characteristics and migration of microplastics in surface water, groundwater and sediment in karst areas: the case of Yulong River in Guilin, Southwest China[J]. Science of the Total Environment, 2023, 868. DOI:10.1016/j.scitotenv.2023.161578
[80] Liu S, Chen H, Wang J Z, et al. The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China[J]. Ecotoxicology and Environmental Safety, 2021, 228. DOI:10.1016/j.ecoenv.2021.113009
[81] 李高俊, 熊雄, 詹晨熙, 等. 南渡江水体微塑料污染现状研究[J]. 环境科学学报, 2022, 42(2): 205-212.
Li G J, Xiong X, Zhan C X, et al. Occurrence of microplastics in the water of the Nandu Jiang River[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 205-212.
[82] Wong G, Löwemark L, Kunz A. Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: spatial heterogeneity and correlation with precipitation[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.113935
[83] Wang Z F, Su B B, Xu X Q, et al. Preferential accumulation of small (< 300 μm) microplastics in the sediments of a coastal plain river network in eastern China[J]. Water Research, 2018, 144: 393-401.
[84] Fraser M A, Chen L, Ashar M, et al. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China[J]. Ecotoxicology and Environmental Safety, 2020, 196. DOI:10.1016/j.ecoenv.2020.110536
[85] Zhao W L, Huang W, Yin M C, et al. Tributary inflows enhance the microplastic load in the estuary: a case from the Qiantang River[J]. Marine Pollution Bulletin, 2020, 156. DOI:10.1016/j.marpolbul.2020.111152
[86] Dai L Y, Wang Z Y, Guo T J, et al. Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China[J]. Chemosphere, 2022, 293. DOI:10.1016/j.chemosphere.2022.133576
[87] Huang Y L, Tian M, Jin F, et al. Coupled effects of urbanization level and dam on microplastics in surface waters in a coastal watershed of Southeast China[J]. Marine Pollution Bulletin, 2020, 154. DOI:10.1016/j.marpolbul.2020.111089
[88] 商卫纯, 郑吉, 卢玺丹, 等. 宁波市水体中微塑料的赋存特征及影响因素[J]. 环境污染与防治, 2022, 44(9): 1157-1163.
Shang W C, Zheng J, Lu X D, et al. Occurrence characteristics and affecting factors of microplastics in urban waterbody of Ningbo[J]. Environmental Pollution and Control, 2022, 44(9): 1157-1163.
[89] Deng H, Wei R, Luo W Y, et al. Microplastic pollution in water and sediment in a textile industrial area[J]. Environmental Pollution, 2020, 258. DOI:10.1016/j.envpol.2019.113658
[90] Tien C J, Wang Z X, Chen C S. Microplastics in water, sediment and fish from the Fengshan River system: relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.114962
[91] Xu Y Y, Chan F K S, Johnson M, et al. Microplastic pollution in Chinese urban rivers: the influence of urban factors[J]. Resources, Conservation and Recycling, 2021, 173. DOI:10.1016/j.resconrec.2021.105686
[92] Pan Z, Sun Y, Liu Q L, et al. Riverine microplastic pollution matters: a case study in the Zhangjiang River of Southeastern China[J]. Marine Pollution Bulletin, 2020, 159. DOI:10.1016/j.marpolbul.2020.111516
[93] Jiang C B, Yin L S, Li Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249: 91-98.
[94] Feng S S, Lu H W, Yao T C, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau[J]. Journal of Hazardous Materials, 2021, 417. DOI:10.1016/j.jhazmat.2021.126034
[95] 周阿美. 微塑料在拉萨河的分布特征及其对模式水生植物紫萍的毒性效应[D]. 拉萨: 西藏大学, 2023.
Zhou A M. Distribution characteristics of microplastics in the Lhasa River and their toxic effects on model aquatic plant Spirodela polyrrhiza[D]. Lhasa: Tibet University, 2023.
[96] Yang L, Luo W, Zhao P, et al. Microplastics in the Koshi River, a remote alpine river crossing the Himalayas from China to Nepal[J]. Environmental Pollution, 2021, 290. DOI:10.1016/j.envpol.2021.118121
[97] Wang G L, Lu J J, Tong Y B, et al. Occurrence and pollution characteristics of microplastics in surface water of the Manas River Basin, China[J]. Science of the Total Environment, 2020, 710. DOI:10.1016/j.scitotenv.2019.136099
[98] Feng S S, Lu H W, Tian P P, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739. DOI:10.1016/j.scitotenv.2020.140087
[99] Hu S X, Ren F M, Jia J M, et al. Exploring the environmental properties and resource utilization of construction waste in Beijing-Tianjin-Hebei region[J]. Environmental Science and Pollution Research, 2022. DOI:10.1007/s11356-022-23327-8
[100] Yin K, Wang D X, Zhao H J, et al. Microplastics pollution and risk assessment in water bodies of two nature reserves in Jilin Province: correlation analysis with the degree of human activity[J]. Science of the Total Environment, 2021, 799. DOI:10.1016/j.scitotenv.2021.149390
[101] 姚明轩, 白雪, 徐振佳, 等. 骆马湖表层沉积物微塑料的分布、来源及储存量[J]. 环境科学, 2022, 43(5): 2566-2574.
Yao M X, Bai X, Xu Z J, et al. Distribution characteristics, sources, and storage of microplastics in surface sediments of Luoma Lake[J]. Environmental Science, 2022, 43(5): 2566-2574.
[102] Mao R F, Hu Y Y, Zhang S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, northern China[J]. Science of the Total Environment, 2020, 723. DOI:10.1016/j.scitotenv.2020.137820
[103] Qin Y M, Wang Z C, Li W P, et al. Microplastics in the sediment of Lake Ulansuhai of Yellow River Basin, China[J]. Water Environment Research, 2020, 92(6): 829-839.
[104] Wang Z C, Qin Y M, Li W P, et al. Microplastic contamination in freshwater: first observation in Lake Ulansuhai, Yellow River Basin, China[J]. Environmental Chemistry Letters, 2019, 17(4): 1821-1830.
[105] 王志超, 杨建林, 杨帆, 等. 春季乌梁素海水体微塑料分布特征及影响因素[J]. 农业环境科学学报, 2021, 40(10): 2189-2197.
Wang Z C, Yang J L, Yang F, et al. Spatial distribution characteristics and influencing factors of microplastics in Lake Ulansuhai during the spring[J]. Journal of Agro-Environment Science, 2021, 40(10): 2189-2197.
[106] 周添红, 张佳倩, 闵芮, 等. 刘家峡水库微塑料的赋存特征及其风险评估[J]. 中国环境科学, 2023, 43(11): 6007-6015.
Zhou T H, Zhang J Q, Min R, et al. Occurrence characteristics and risk assessment of microplastics in Liujiaxia reservoir[J]. China Environmental Science, 2023, 43(11): 6007-6015.
[107] Yin L S, Jiang C B, Wen X F, et al. Microplastic pollution in surface water of urban lakes in Changsha, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(9). DOI:10.3390/ijerph16091650
[108] Wen X F, Du C Y, Xu P, et al. Microplastic pollution in surface sediments of urban water areas in Changsha, China: abundance, composition, surface textures[J]. Marine Pollution Bulletin, 2018, 136: 414-423.
[109] Li L, Geng S X, Wu C X, et al. Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin[J]. Environmental Pollution, 2019, 254. DOI:10.1016/j.envpol.2019.07.119
[110] Yin L S, Wen X F, Du C Y, et al. Comparison of the abundance of microplastics between rural and urban areas: a case study from East Dongting Lake[J]. Chemosphere, 2020, 244. DOI:10.1016/j.chemosphere.2019.125486
[111] Wang W F, Yuan W K, Chen Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545.
[112] Jiang C B, Yin L S, Wen X F, et al. Microplastics in sediment and surface water of West Dongting Lake and South Dongting Lake: abundance, source and composition[J]. International Journal of Environmental Research and Public Health, 2018, 15(10). DOI:10.3390/ijerph15102164
[113] Su L, Xue Y G, Li L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719.
[114] Zhang Q J, Liu T, Liu L, et al. Distribution and sedimentation of microplastics in Taihu Lake[J]. Science of the Total Environment, 2021, 795. DOI:10.1016/j.scitotenv.2021.148745
[115] Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187.
[116] 李文华, 简敏菲, 刘淑丽, 等. 鄱阳湖湖口-长江段沉积物中微塑料与重金属污染物的赋存关系[J]. 环境科学, 2020, 41(1): 242-252.
Li W H, Jian M F, Liu S L, et al. Occurrence relationship between microplastics and heavy metals pollutants in the estuarine sediments of Poyang Lake and the Yangtze River[J]. Environmental Science, 2020, 41(1): 242-252.
[117] Di M X, Liu X N, Wang W F, et al. Manuscript prepared for submission to environmental toxicology and pharmacology pollution in drinking water source areas: microplastics in the Danjiangkou Reservoir, China[J]. Environmental Toxicology and Pharmacology, 2019, 65: 82-89.
[118] 潘雄, 林莉, 张胜, 等. 丹江口水库及其入库支流水体中微塑料组成与分布特征[J]. 环境科学, 2021, 42(3): 1372-1379.
Pan X, Lin L, Zhang S, et al. Composition and distribution characteristics of microplastics in Danjiangkou Reservoir and its tributaries[J]. Environmental Science, 2021, 42(3): 1372-1379.
[119] Lin L, Pan X, Zhang S, et al. Distribution and source of microplastics in China's second largest reservoir-Danjiangkou Reservoir[J]. Journal of Environmental Sciences, 2021, 102: 74-84.
[120] Xia W L, Rao Q Y, Deng X W, et al. Rainfall is a significant environmental factor of microplastic pollution in inland waters[J]. Science of the Total Environment, 2020, 732. DOI:10.1016/j.scitotenv.2020.139065
[121] Liu Y, Fang J S. Coastal lakes as a buffer zone for the accumulation and redistribution of plastic particles from continental to marine environment: a case study of the Dishui Lake in Shanghai, China[J]. Applied Sciences, 2020, 10(6). DOI:10.3390/app10061974
[122] Xu X, Zhang L, Xue Y G, et al. Microplastic pollution characteristic in surface water and freshwater fish of Gehu Lake, China[J]. Environmental Science and Pollution Research, 2021, 28(47): 67203-67213.
[123] 刘运钊. 大房郢水库微塑料污染现状和生态风险评价[D]. 合肥: 安徽大学, 2022.
Liu Y Z. Pollution status and ecological risk assessment of microplastics in the Dafangying Reservoir[D]. Hefei: Anhui University, 2022.
[124] 王璇, 牛司平, 宋小龙, 等. 城市湖泊沉积物微塑料污染特征[J]. 环境科学, 2020, 41(7): 3240-3248.
Wang X, Niu S P, Song X L, et al. Characterization of microplastic pollution of sediments from urban lakes[J]. Environmental Science, 2020, 41(7): 3240-3248.
[125] 文晓凤, 尹令实, 蒋昌波, 等. 典型城市湖泊岳阳南湖表层水体中的微塑料污染特征[J]. 环境化学, 2022, 41(11): 3579-3588.
Wen X F, Yin L S, Jiang C B, et al. Microplastics in surface water of a typical urban lake: a case study from Nanhu Lake, Yueyang City[J]. Environmental Chemistry, 2022, 41(11): 3579-3588.
[126] Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616-617: 1620-1627.
[127] 张潇峮, 彭梦, 王艺, 等. 三峡库区重庆段表层水体中微塑料组成及分布特征[J]. 淡水渔业, 2022, 52(1): 90-95.
Zhang X Q, Peng M, Wang Y, et al. Composition and distribution characteristics of microplastics in surface water of Chongqing section of the Three Gorges Reservoir[J]. Freshwater Fisheries, 2022, 52(1): 90-95.
[128] Zhang Z M, Wu X L, Zhang J C, et al. Distribution and migration characteristics of microplastics in farmland soils, surface water and sediments in Caohai Lake, southwestern plateau of China[J]. Journal of Cleaner Production, 2022, 366. DOI:10.1016/j.jclepro.2022.132912
[129] 袁海英, 侯磊, 梁启斌, 等. 滇池近岸水体微塑料污染与富营养化的相关性[J]. 环境科学, 2021, 42(7): 3166-3175.
Yuan H Y, Hou L, Liang Q B, et al. Correlation between microplastics pollution and eutrophication in the near shore waters of Dianchi Lake[J]. Environmental Science, 2021, 42(7): 3166-3175.
[130] Tan X L, Yu X B, Cai L Q, et al. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China[J]. Chemosphere, 2019, 221: 834-840.
[131] Li B, Wan H, Cai Y P, et al. Human activities affect the multidecadal microplastic deposition records in a subtropical urban lake, China[J]. Science of the Total Environment, 2022, 820. DOI:10.1016/j.scitotenv.2022.153187
[132] 吴昊南. 内蒙古高原湖泊水体与沉积物中微塑料的赋存特征研究[D]. 呼和浩特: 内蒙古大学, 2022.
Wu H N. Study on the occurrence characteristics of microplastics in lake water and sediment in Inner Mongolia Plateau[D]. Hohhot: Inner Mongolia University, 2022.
[133] 刘智琦. 青藏高原典型内陆湖泊水环境中微塑料的分布及风险评价[D]. 西安: 西安理工大学, 2022.
Liu Z Q. Distribution and risk assessment of microplastics in water environment of typical inland lake in Tibetan Plateau[D]. Xi'an: Xi'an University of Technology, 2022.
[134] Ng E L, Huerta Lwanga E, Eldridge S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627: 1377-1388.
[135] Carr S A. Sources and dispersive modes of micro-fibers in the environment[J]. Integrated Environmental Assessment and Management, 2017, 13(3): 466-469.
[136] Wu N, Zhang Y, Zhang X H, et al. Occurrence and distribution of microplastics in the surface water and sediment of two typical estuaries in Bohai Bay, China[J]. Environmental Science: Processes & Impacts, 2019, 21(7): 1143-1152.
[137] Zhao S Y, Wang T, Zhu L X, et al. Analysis of suspended microplastics in the Changjiang Estuary: implications for riverine plastic load to the ocean[J]. Water Research, 2019, 161: 560-569.
[138] Wu F R, Pennings S C, Tong C F, et al. Variation in microplastics composition at small spatial and temporal scales in a tidal flat of the Yangtze Estuary, China[J]. Science of the Total Environment, 2020, 699. DOI:10.1016/j.scitotenv.2019.134252
[139] Xu P, Peng G Y, Su L, et al. Microplastic risk assessment in surface waters: a case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2018, 133: 647-654.
[140] Peng G Y, Zhu B S, Yang D Q, et al. Microplastics in sediments of the Changjiang Estuary, China[J]. Environmental Pollution, 2017, 225: 283-290.
[141] 朱晓桐, 衣俊, 强丽媛, 等. 长江口潮滩表层沉积物中微塑料的分布及沉降特点[J]. 环境科学, 2018, 39(5): 2067-2074.
Zhu X T, Yi J, Qiang L Y, et al. Distribution and settlement of microplastics in the surface sediment of Yangtze Estuary[J]. Environmental Science, 2018, 39(5): 2067-2074.
[142] Lam T W L, Fok L, Lin L, et al. Spatial variation of floatable plastic debris and microplastics in the Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2020, 158. DOI:10.1016/j.marpolbul.2020.111383
[143] Zuo L Z, Sun Y X, Li H X, et al. Microplastics in mangrove sediments of the Pearl River Estuary, South China: correlation with halogenated flame retardants' levels[J]. Science of the Total Environment, 2020, 725. DOI:10.1016/j.scitotenv.2020.138344
[144] Zhao S Y, Zhu L X, Li D J. Microplastic in three urban estuaries, China[J]. Environmental Pollution, 2015, 206: 597-604.
[145] Wang Y, Chen X W. Aggregation behavior of polyethylene microplastics in the nearshore environment: the role of particle size, environmental condition and turbulent flow[J]. Science of the Total Environment, 2023, 901. DOI:10.1016/j.scitotenv.2023.165941
[146] Wang K, Lin H, Wang S M, et al. Species diversity and community structure of microalgae living on microplastics in Luoyuan Bay, China[J]. Marine Pollution Bulletin, 2022, 180. DOI:10.1016/j.marpolbul.2022.113809
[147] 国家统计局. 国家统计局官网[EB/OL]. https://www.stats.gov.cn/, 2023-12-28.