洱海浮游植物群落结构变化及影响因素 |
摘要点击 888 全文点击 113 投稿时间:2024-06-17 修订日期:2024-08-05 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 高原湖泊 浮游植物 功能群 环境因子 浮游动物 底栖动物 |
英文关键词 plateau lakes phytoplankton functional groups environmental factors zooplankton zoobenthos |
作者 | 单位 | E-mail | 黄中情 | 上海交通大学环境科学与工程学院, 上海 200240 云南洱海湖泊生态系统国家野外科学观测研究站, 大理 671000 上海交通大学云南(大理)研究院, 大理 671000 | Huangzq998@126.com | 张志萍 | 云南洱海湖泊生态系统国家野外科学观测研究站, 大理 671000 上海交通大学云南(大理)研究院, 大理 671000 | | 沈剑 | 上海交通大学环境科学与工程学院, 上海 200240 云南洱海湖泊生态系统国家野外科学观测研究站, 大理 671000 上海交通大学云南(大理)研究院, 大理 671000 | sjlnts@sjtu.edu.cn | 田春梅 | 上海交通大学环境科学与工程学院, 上海 200240 云南洱海湖泊生态系统国家野外科学观测研究站, 大理 671000 上海交通大学云南(大理)研究院, 大理 671000 | | 李炜 | 云南洱海湖泊生态系统国家野外科学观测研究站, 大理 671000 上海交通大学云南(大理)研究院, 大理 671000 | | 封吉猛 | 上海交通大学环境科学与工程学院, 上海 200240 云南洱海湖泊生态系统国家野外科学观测研究站, 大理 671000 上海交通大学云南(大理)研究院, 大理 671000 | | 王欣泽 | 上海交通大学环境科学与工程学院, 上海 200240 云南洱海湖泊生态系统国家野外科学观测研究站, 大理 671000 上海交通大学云南(大理)研究院, 大理 671000 | |
|
中文摘要 |
浮游植物作为湖泊中最重要的初级生产者,其群落结构可以反映湖泊生态系统变化. 为了解高原湖泊洱海浮游植物功能群落结构变化规律及其影响因素,于2022~2023年每季度连续观测洱海浮游植物群落组成、水质变化、浮游动物和底栖动物丰度. 结果表明,2022~2023年共鉴定出浮游植物7门81属,硅藻密度和生物量降低,蓝藻、绿藻和隐藻增加. 浮游植物分布存在明显的时空差异,藻密度春季低,秋季高,生物量夏季达到峰值. 北部湖区藻密度和生物量较高,中部和南部部分区域升高. Shannon-Wiener(H)多样性指数和Pielou(J)均匀度指数分别为0.82~2.43和0.34~0.97,均降低. 2022~2023年,洱海优势浮游植物有16属,划分为13个功能群,浮游植物群落结构由P功能群向M、H1和K功能群转变,浮游植物由脆杆藻和长孢藻向直链藻、丝状蓝藻和微囊藻演变,优势功能群数目增多,功能群落结构变化不稳定. 水温(WT)、浊度(NTU)、pH、水面风速(WS)、总氮(TN)、电导率(EC)和透明度(SD)是影响浮游植物功能群变化的关键环境因子. P功能群生物量与SD和EC正相关,M和H1功能群密度与pH、NTU和WT正相关,K功能群密度和生物量与NTU、WT和WS呈正相关. 枝角类和桡足类浮游动物,以及水生昆虫、腹足类和甲壳类底栖动物与H1、S1、SN和P功能群正相关,原生动物、双壳类、寡毛类和蛭类与K、C、B、X2和Lo浮游植物功能群正相关. T和E功能群与轮虫和原生动物正相关. M和Y功能群与浮游动物和底栖动物的相关性作用不明显或负相关. |
英文摘要 |
Phytoplankton is the most important primary producer in lakes, and its community structure can reflect the changes in lake ecosystems. In order to understand the changes of phytoplankton functional community structure and its influencing factors in Erhai Lake, a plateau lake, the phytoplankton community composition, water quality changes, and zooplankton and zoobenthos abundance in Erhai Lake were continuously observed every quarter from 2022 to 2023. The results showed that 7 phyla and 81 genera of phytoplankton were identified from 2022 to 2023. Bacillariophyta density and biomass decreased, while cyanobacteria, chorophyta, and cryptoalgae increased. The density of phytoplankton was low in spring and high in autumn, and the biomass reached its peak in summer. The density and biomass of algae were higher in the northern lake area and increased in the central and southern parts of the lake. The Shannon Wiener (H) diversity index and Pielou (J) evenness index were 0.82-2.43 and 0.34-0.97, respectively, which decreased. There were 16 genera of dominant phytoplankton in Erhai Lake, which were divided into 13 functional groups. The phytoplankton community structure changed from P functional groups to M, H1, and K functional groups. Phytoplankton evolved from Fragilaria sp. and Dolichospermum sp. to Melosira sp., filamentous cyanobacteria, and Microcystis sp.. The number of dominant functional groups increased, and the change of functional community structure was unstable. Water temperature (WT), turbidity (NTU), pH, water surface wind speed (WS), total nitrogen (TN), electrical conductivity (EC), and transparency (SD) were the key environmental factors affecting the changes of phytoplankton functional groups. The biomass of the P functional group was positively correlated with SD and EC; the density of the M and H1 functional group was significantly positively correlated with pH, NTU, and WT; and the density and biomass of the K functional group were positively correlated with NTU, WT, and WS. Cladocera and Copepoda zooplankton, as well as aquatic insects, gastropods, and crustacean benthos, were positively correlated with the H1, S1, SN, and P functional groups, while protozoa, bivalves, oligochaetes, and leeches were positively correlated with the K, C, B, X2, and Lo functional groups. The T and E functional groups were positively correlated with rotifers and protozoa. The correlation between the M and Y functional groups and zooplankton and zoobenthos was not obvious or negatively correlated. |
|
|
|