首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
锌和镍改性生物炭对环丙沙星的吸附降解性能与机制
摘要点击 1088  全文点击 152  投稿时间:2024-02-18  修订日期:2024-04-15
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  持久性自由基(PFRs)  活性氧自由基(ROS)  金属盐浸渍改性  抗生素  降解
英文关键词  persistent free radicals(PFRs)  reactive oxygen species(ROS)  metal salt impregnation modification  antibiotics  degradation
作者单位E-mail
张静 昆明理工大学环境科学与工程学院, 云南省土壤固碳与污染控制重点实验室, 昆明 650500 1127658405@qq.com 
江豪 昆明理工大学环境科学与工程学院, 云南省土壤固碳与污染控制重点实验室, 昆明 650500  
杨晓宇 昆明理工大学环境科学与工程学院, 云南省土壤固碳与污染控制重点实验室, 昆明 650500  
段文焱 昆明理工大学环境科学与工程学院, 云南省土壤固碳与污染控制重点实验室, 昆明 650500 duanwenyan0405@qq.com 
陈芳媛 昆明理工大学环境科学与工程学院, 云南省土壤固碳与污染控制重点实验室, 昆明 650500  
中文摘要
      改性生物炭具有较大的比表面积、可调节的孔隙结构和丰富的活性功能位点,使其能有效去除环境中的抗生素,但比较改性生物炭的不同性质对抗生素吸附降解的贡献缺乏系统研究.为明确金属浸渍改性生物的持久性自由基(PFRs)和微孔结构对环丙沙星(CIP)的吸附降解的贡献差异,在500 ℃和800 ℃热解条件下,制备了Ni改性和Zn改性的生物炭. 500 ℃ Ni改性(NCS500)明显提升了生物炭表面PFRs信号强度,而800 ℃ Zn改性生物炭(ZCS800)比表面积得到显著提升(1 030.94 m2·g-1).与未改性生物炭相比,NCS500和ZCS800能够提高对CIP的最大吸附容量,使其分别达到78.68 mg·g-1和190.07 mg·g-1,比对应的原始生物炭提升了3.35倍和24.83倍.乙腈萃取实验可区分两种改性生物炭CIP降解率在总去除率中的占比,Ni改性生物炭降解率最高,占总去除率的74.67%;而Zn改性生物炭的总去除率最高,但降解率仅占总去除率的52.63%,这是因为两种金属盐浸渍改性生物炭能产生羟基自由基(·OH)等活性氧物质有效降解CIP,但Ni改性生物炭其表面突出的PFRs信号能进一步直接与CIP反应高效降解CIP,而Zn改性生物炭较高的比表面积有利于疏水相互作用和π-π电子供体-受体与芳香分子的相互作用,显著提高了CIP的吸附.
英文摘要
      Modified biochars have a large specific surface area, a tunable pore structure, and abundant active functional sites, which enable them to effectively remove antibiotics from the environment. However, systematic research on the contribution of different properties of modified biochars to the adsorption and degradation of antibiotics has not been carefully investigated. To clarify the contribution of adsorption and degradation of ciprofloxacin (CIP) by persistent free radicals (PFRs) and the microporous structure of metal-impregnated modified biochars during the removal process, nickel-modified and zinc-modified biochars were prepared under pyrolysis conditions of 500 ℃ and 800 ℃, respectively. Nickel-modified biochar pyrolyzed at 500 ℃ (NCS500) significantly improved the PFR signal intensity, while the specific surface area of zinc-modified biochar pyrolyzed at 800 ℃ (ZCS800) was significantly increased (1 030.94 m2·g-1). The maximum CIP adsorption capacity of NCS500 and ZCS800 increased dramatically, reaching 78.68 mg·g-1 and 190.07 mg·g-1, respectively, which was 3.35 times and 24.83 times higher than the corresponding values of the original unmodified biochar. The oxygen-containing functional groups such as carboxylic acid, hydroxyl group, and carbonyl group on the NCS500 were responsible for CIP adsorption due to the ion exchange, electrostatic interaction, surface complexation, and hydrogen bonding provided by carbonate components. The formation of a relatively stable graphite structure on the surface of ZCS800 was conducive to hydrophobic interaction, π-π electron donor-acceptor interaction with aromatic molecules, and enhancing the adsorption of CIP. The acetonitrile extraction experiment could distinguish the adsorption and degradation contributions of the two modified biochars in the process of CIP removal, and the amount of CIP degradation by NCS500 could account for 74.67% of the total removal. The total CIP removal by ZCS800 was the highest, but the amount of CIP degradation accounted for only 52.63% of the total removal. This was because these two metal salt-impregnated modified biochars could produce active oxygen species such as hydroxyl radicals to effectively degrade CIP, while the PFRs signal on the surface of NCS500 could also directly react with CIP to effectively degrade CIP. The Zn-modified biochar was conducive to hydrophobic interactions, π-π interactions, and aromatic molecule interactions, which significantly improved the adsorption of CIP.

您是第75747383位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2