首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
石墨烯包覆氮化碳掺杂铁酸铜活化PMS同步去除水中抗生素抗性菌、抗性基因并抑制其水平转移的机制
摘要点击 1166  全文点击 167  投稿时间:2024-01-18  修订日期:2024-04-08
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  过硫酸盐活化  铁酸铜复合材料  单线态氧  抗生素抗性基因(ARGs)  基因水平转移
英文关键词  persulfate activation  copper ferrite composite material  singlet oxygen  antibiotic resistance genes(ARGs)  horizontal transfer
作者单位E-mail
周见卓 同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室, 上海 200082 2232816@tongji.edu.cn 
孙秋楠 同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室, 上海 200082  
李澳 同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室, 上海 200082  
王学江 同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室, 上海 200082 wangxj@tongji.edu.cn 
赵建夫 同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室, 上海 200082  
中文摘要
      抗生素抗性菌(ARB)和抗性基因(ARGs)作为新兴污染物,严重威胁着人类健康和生态安全. 通过冷冻干燥法制备了还原性氧化石墨烯(rGO)包覆的g-C3N4掺杂铁酸铜催化材料(rGO-CNCF),通过XRD、FTIR、XPS、SEM-EDS、TEM和DRS等分析手段对复合材料进行了表征,并构建了可见光助rGO-CNCF活化PMS系统,用于水中ARB和ARGs的去除. 结果表明,在催化剂投加量为0.2 g·L-1,PMS投加量为0.3 g·L-1,溶液初始pH值为7.0时,30 min内Vis-rGO-CNCF/PMS高级氧化系统可实现对8.01 log SA-ARB的完全灭活. 该系统能够有效降低SA-ARGs的水平转移能力,对于胞内和胞外游离态的SA-ARGs具有良好的破坏能力. 同时,该高级氧化体系可以实现对水体中磺胺类抗生素及其ARB和ARGs的协同处理. 该系统可以破坏ARB的细胞膜结构,使细胞破碎,淬灭实验表明,起主要作用的活性物质是单线态氧(1O2). 研究结果可以为处理水中的ARB和ARGs污染及控制ARGs的水平转移提供一种有前景的方法.
英文摘要
      As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-C3N4 co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water. The results showed that the complete inactivation of 8.01 log SA-ARB could be achieved within 30 min when the catalyst dosage was 0.2 g·L-1, The PMS dosage was 0.3 g·L-1, and the initial pH value of the solution was 7.0. The Vis-rGO-CNCF/PMS system was able to effectively reduce the horizontal transfer of SA-ARGs, and this system had a good destructive ability for intracellular and extracellular SA-ARGs. The destruction ability of the advanced oxidation process for the two pollutants together, SMT and SA-ARB, was maintained at a high level. This system could destroy the cell membrane structure of resistant bacteria, causing cell fragmentation, and quenching experiments showed that singlet oxygen (1O2) played a major role in the system. This study can provide a promising method for controlling ARB and ARG pollution in water and controlling the horizontal transfer of ARGs.

您是第76817900位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2