我国木质家具制造行业VOCs排放特征及环境影响 |
摘要点击 2422 全文点击 373 投稿时间:2023-08-17 修订日期:2023-11-10 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 木质家具制造行业 挥发性有机化合物(VOCs) 涂料类型 排放特征 环境影响 |
英文关键词 wooden furniture-manufacturing industry volatile organic compounds (VOCs) types of coating emission characteristics environmental impact |
|
中文摘要 |
为研究木质家具制造行业挥发性有机化合物(VOCs)排放特征及其环境影响,选取9家典型的木质家具制造企业,对其涂装工序排气筒废气进行样品采集和VOCs检测,并通过最大增量反应活性法(MIR)和二次有机气溶胶(SOA)生成潜势法量化其对臭氧(O3)和SOA的生成贡献.结果表明:①不同类型涂料排气筒VOCs排放浓度差异较大,溶剂型涂料排气筒VOCs排放浓度显著高于水性涂料和辐射固化(UV)涂料排气筒废气VOCs排放浓度,其ρ(VOCs)范围分别为2.82~155.37、 1.13~104.45和0.57~1.15 mg·m-3;②溶剂型涂料排气筒废气中VOCs以酯类为主,质量分数高达45.88%,质量分数最高的VOCs物种为乙酸丁酯(31.07%);水性涂料和UV涂料排气筒废气中VOCs均以醇类为主,质量分数分别为47.04%和35.10%,且质量分数最高的VOCs物种均为乙醇,质量分数分别为46.63%和34.32%;③溶剂型涂料、水性涂料和UV涂料排气筒排放VOCs的OFP值分别为149.23、 50.90和1.87 mg·m-3,不同类型涂料排气筒OFP的首要贡献组分分别为间/对-二甲苯(26.61%)、乙醇(36.35%)和乙醇(23.98%);④溶剂型涂料、水性涂料和UV涂料排气筒排放VOCs的SOA值分别为0.76、 0.25和0.01 mg·m-3,对SOA生成贡献率最高的VOCs组分均为芳香烃(96.35%~98.96%),关键活性物种为甲苯、乙苯和二甲苯;⑤将溶剂型涂料、水性涂料和UV涂料排气筒废气对环境影响进行比较,发现溶剂型涂料排气筒排放的VOCs所产生的OFP与SOA远高于水性涂料和UV涂料,从源头上采用水性涂料和UV涂料替代溶剂型涂料可以大幅度降低VOCs排放浓度,并减少OFP和SOA的生成. |
英文摘要 |
Volatile organic compounds (VOCs) from the wooden furniture-manufacturing industry are an important emission source. To study the emission characteristics of VOCs from the wooden furniture-manufacturing industry and associated environmental impacts, nine typical wooden furniture manufacturers in China were selected to carry out sample collection and VOCs detection. The maximum incremental reactivity (MIR) method and secondary organic aerosol (SOA) formation potential method were used to quantify the corresponding contributions to the generation of O3 and SOA. The results showed that: ① The concentrations of VOCs emitted from different types of coating exhaust gas were different. The emission concentration of VOCs in solvent-based coating exhaust gas was significantly higher than that in water-based coating exhaust gas and ultra-violet (UV) coating exhaust gas, and the VOCs emission concentrations ranged between 2.82 - 155.37, 1.13 - 104.45, and 0.57 - 1.15 mg·m-3, respectively. ② The main organic group in solvent-based coating exhaust gas was esters, accounting for 45.88%, and butyl acetate (31.07%) was the main VOCs species. The main organic group in water-based coating exhaust gas and UV coating exhaust gas was alcohols, and the main VOCs species in water-based coating exhaust gas and UV coating exhaust gas were both ethanol, accounting for 46.63% and 34.32%, respectively. ③ The OFP of VOCs emitted by solvent-based coating, water-based coating, and UV coating were 149.23, 50.90, and 1.87 mg·m-3, respectively, and the primary contributing components of OFP of different types of coating were m/p-xylene (26.61%), ethanol (36.35%), and ethanol (23.98%), respectively. ④ The SOA of VOCs emitted by solvent-based coating, water-based coating, and UV coating were 0.76, 0.25, and 0.01 mg·m-3, respectively. The SOA generation of various types of coating was dominated by aromatics(96.35%-98.96%), and the main active compounds were toluene, ethylbenzene, and xylene. ⑤ Comparing the environmental impact of exhaust gas from solvent-based coating, water-based coating, and UV coating, it was found that the OFP and SOA generated by the VOCs emitted from solvent-based coating were much higher than those for water-based coating and UV coating. Therefore, the implementation of water-based coating and UV coating substitution strategy from the source could effectively reduce VOCs emissions and abate OFP and SOA productions. |
|
|
|