首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
亚硫酸氢盐强化微量Fe2+活化过二硫酸盐降解扑热息痛
摘要点击 2106  全文点击 734  投稿时间:2022-10-06  修订日期:2023-02-15
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  硫酸根自由基(SO4-·)  亚硫酸氢盐  扑热息痛  微量Fe2+  降解  过二硫酸盐(PDS)
英文关键词  sulfate radical(SO4-·)  bisulfite  paracetamol  minute Fe2+  degradation  peroxydisulfate (PDS)
作者单位E-mail
莫茜婷 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 1961444284@qq.com 
聂淑华 江西省药品检查员中心, 南昌 330029  
晏彩霞 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022  
丁明军 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022  
陈诗瑶 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022  
聂明华 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022
自然资源部生态地球化学重点实验室, 北京 100037 
mhnie@jxnu.edu.cn 
中文摘要
      Fe2+可激活过二硫酸盐(PDS)快速产生硫酸根自由基(SO4-·),但Fe2+会快速转化为低活性的Fe3+,且Fe2+的投加量普遍较大,限制了该体系的广泛应用.采用亚硫酸氢盐(BS)强化微量Fe2+-PDS体系降解水中的扑热息痛(APAP).结果表明,投加BS可促进Fe2+-Fe3+的循环,明显改善Fe2+-PDS体系对APAP的降解效果,在最优条件下(PDS=0.6 mmol·L-1;BS=0.4 mmol·L-1;Fe2+=10 μmol·L-1;pH=4)下,APAP (4 μmol·L-1)可在180 s内被完全降解.同时,APAP的降解速率随BS (0~0.6 mmol·L-1)和PDS (0.2~1.5 mmol·L-1)浓度的增大而升高,适量提高Fe2+浓度可促进APAP的降解,但增加BS的投加次数对降解速率影响不大.HCO3-与HPO42-明显抑制了体系降解APAP的效率,Cl-和NO3-有轻微抑制作用,腐殖酸(HA)则影响不大.通过淬灭实验和电子顺磁共振波谱检测,证实了体系中SO4-·、·OH和单线态氧的产生,其中SO4-·是降解APAP的主要活性物种.利用三维荧光光谱技术对APAP降解过程进行了表征,表明APAP降解产物具有荧光特性.此外,还鉴定出5种中间产物,并提出了3种可能的降解途径.体系在实际水体中的效能低于超纯水中的表现,但延长反应时间可明显增强降解效果,表明BS-Fe2+-PDS体系是一种有前景的有机污染物降解方法.
英文摘要
      Fe2+ has been commonly selected to activate peroxydisulfate(PDS) for sulfate radical(SO4-·) generation because of its eco-friendly, cost-effective, and high activity characteristics. However, Fe2+ can be rapidly oxidized to Fe3+ in the reaction, leading to poor utilization of iron for PDS activation. Further, a fairly high concentration of Fe2+ is generally required and may cause iron sludge production and secondary pollution. In this study, a minute Fe2+-activated PDS system induced by bisulfite(BS) was used to degrade paracetamol(APAP) in water. The results showed that the Fe2+-PDS system could be enhanced by the circulation of Fe2+-Fe3+ with the injection of BS and by keeping Fe2+ at a high concentration. Under the optimal conditions(PDS=0.6 mol·L-1; BS=0.4 mol·L-1; Fe2+=10 μmol·L-1; pH=4), 100% APAP(4 μmol·L-1) was removed within 180 s. The degradation rate of APAP increased with the increase in BS(0-0.6 mmol·L-1) and PDS(0.2-1.5 mmol·L-1) concentration, and a modest Fe2+ concentration could accelerate APAP removal. Co-existing substances inhibited the APAP removal and followed the order of HCO3->HPO42->Cl->NO3->humic acid(HA). Based on the quenching experiments and electron paramagnetic resonance spectroscopy test, SO4-· was shown to be the primary reactive species for APAP decomposition in the BS-Fe2+-PDS process. Three-dimensional fluorescence spectroscopy revealed that APAP intermediates had fluorescence characteristics. Moreover, five intermediates were identified, and the probable APAP degradation pathways were proposed. The removal efficiencies of APAP were lower in real waters than that in ultrapure water. Nevertheless, the removal effect was greatly improved after a prolonged reaction time. All results indicated that the BS-Fe2+-PDS system could be a promising method for organic pollutant treatment.

您是第75746510位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2