密云水库入库河流微生物群落演替对氮素形态转化的影响 |
摘要点击 3113 全文点击 763 投稿时间:2022-10-18 修订日期:2022-11-29 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 密云水库入库河流 牤牛河 微生物群落结构 氮素转化 PICRUSt2 |
英文关键词 inflow river of Miyun Reservoir Mangniu River microbial community structure nitrogen transformation PICRUSt2 |
作者 | 单位 | E-mail | 辛苑 | 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085 中国科学院大学, 北京 100049 广西大学生命科学与技术学院, 亚热带农业生物资源保护与利用国家重点实验室, 南宁 530005 | xinyuanxy53@163.com | 张耀方 | 北京市水科学技术研究院, 北京 100048 | | 李添雨 | 北京市水科学技术研究院, 北京 100048 | | 叶芝菡 | 北京市水科学技术研究院, 北京 100048 | | 申佩弘 | 广西大学生命科学与技术学院, 亚热带农业生物资源保护与利用国家重点实验室, 南宁 530005 | | 魏源送 | 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085 中国科学院大学, 北京 100049 | | 高超龙 | 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085 中国科学院大学, 北京 100049 | | 宋舒兴 | 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085 中国科学院大学, 北京 100049 | | 张俊亚 | 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085 中国科学院大学, 北京 100049 | jyzhang@rcees.ac.cn |
|
中文摘要 |
密云水库是北京市重要的地表饮用水源地,但近年来,密云水库库区及入库河流中的总氮(TN)浓度呈现连年上升的趋势.以密云水库上游典型入库河流牤牛河为例,考察各形态氮素变化的空间分布规律,并从微生物群落组成和功能预测的视角,解析氮素形态的转化,以期为密云水库的氮污染治理提供科学依据.结果表明,密云水库上游除TN外,其余水质理化指标均满足我国地表水环境质量标准(GB 3838-2002)的Ⅱ类标准.入库河流TN浓度显著高于库区(P<0.05),且以NO3--N为主,占比为77.7%~92.9%.半城子水库库区的C/N较高,有助于反硝化脱氮的发生,表现出一定自净能力.牤牛河水体和底质中微生物群落结构具有显著差异,呈现一定的空间分布特征,高NO3--N浓度是影响微生物群落结构演替的主要环境因子.牤牛河中存在大量硝化和反硝化功能微生物,反硝化菌相对丰度高于硝化菌,且均呈现出底质略高于水体的特点.牤牛河优势硝化菌和反硝化菌分别为Nitrosopumilus和Pseudomonas.PICRUSt2功能预测结果表明,牤牛河微生物氮代谢以NO3--N还原模块为主,且主要发生于水体中;硝化过程的功能基因在水体中的丰度最高,主要为narGH;而参与NO3--N还原反应的主要功能基因为底质中的异养反硝化菌(DNRA)所携带的nirBD,而反硝化模块的功能基因主要为nirK. |
英文摘要 |
The Miyun Reservoir is the major source of surface drinking water in Beijing. However, the total nitrogen (TN) concentrations in the Miyun Reservoir and inflowing rivers have recently been increasing. In this study, the Mangniu River, a typical inflow river in the upper reaches of the Miyun Reservoir, was selected as the study area to investigate the spatial distribution and transformation of various nitrogen forms from the perspective of microbial community composition and predicting function, aimimg at providing a scientific reference for nitrogen pollution control of the Miyun Reservoir. The results indicated that except for TN, all the other physical and chemical water quality indicators in the upper reaches of the Miyun Reservoir met the Class II criteria of the environmental quality standards for surface water in China (GB 3838-2002). Additionally, NO3--N was the primary constituent of TN, ranging from 77.7% to 92.9%. Banchengzi Reservoir has a certain self-purification ability because its high C/N ratio promotes denitrification. Significant differences in microbial community structure were observed between the water and sediments of Mangniu River along with spatial distribution. High NO3--N concentration was the major environmental factor affecting the succession of microbial community structure. Many nitrification and denitrification microorganisms existed in Mengniu River, and the relative abundance of denitrification bacteria (DNB) was higher than that of nitrification bacteria, and that in the sediments was slightly higher than that in the water. Nitrosopumilus and Pseudomonas were the dominant nitrification and denitrification bacteria in Mengniuhe River, respectively. The results of phylogenetic investigation of communities by the reconstruction of unobserved states (PICRUSt2) showed that NO3--N reduction module was the major nitrogen metabolism module, which primarily occurred in water. The abundance of the functional genes for nitrification (i.e., narGH) was the highest in water, and the major functional gene involved in NO3--N reduction was nirBD of DNRA, which was primarily present in the sediments; however, the main functional gene involved in denitrification was nirK. |
|
|
|