首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于双维度校验的珠三角区域臭氧生成机制长期时空演化特征识别
摘要点击 1410  全文点击 1166  投稿时间:2022-01-23  修订日期:2022-04-06
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  臭氧(O3)  臭氧生成机制  VOC活性  长期  时空演化
英文关键词  ozone (O3)  ozone formation mechanism (OFM)  volatile organic compounds activity (VOCR)  long-term trend  spatial-temporal evolution
作者单位E-mail
杨雷峰 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655 yangleifeng@scies.org 
谢丹平 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655 xiedanping@scies.org 
杨俊 华南理工大学环境与能源学院, 广州 510006  
韩静磊 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655  
刘丽君 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655  
袁自冰 华南理工大学环境与能源学院, 广州 510006  
中文摘要
      臭氧(O3)污染已经成为我国主要城市区域大气环境的首要污染物,由于其生成与前体物之间呈现高度非线性的关系,O3生成机制的识别对前体物的减排具有基础性的重要作用.针对常规方法难以较好对机制的长期演化特征进行识别问题,基于常规观测数据(O3、NO2)和温度(T)与挥发性有机物活性(VOCR)之间的关系,从NO2T两个维度对珠三角区域O3的生成机制进行了识别并做校验,分析了2006~2020年期间O3的趋势变化规律和原因,研究了机制的长期演化特征.结果表明,O3浓度随NO2T水平的升高呈现升高、稳定、下降和再次升高的趋势变化规律,当ρ(NO2)处于0~35、35~45、>45 μg·m-3T处于>30、25~30、<25℃时,机制分别处于NOx控制区、过渡区和VOCR控制区.不同时间段,随着T升高VOCR随之升高,推动了O3浓度上升.由于前体物排放趋势变化和O3生成机制状况不同,O3浓度在不同时间段和T条件下的趋势变化规律不同.整体上,珠三角区域西部偏VOCR控制区,东部偏过渡区,两个维度机制的识别结果具有较高一致性.随时间变化,西部区域的过渡区向VOCR控制区转变,东部区域的VOCR控制区向NOx控制区转变.在不同时间段,随着T升高O3生成对NOx的敏感性增强,随时间变化,高温和低温条件下O3生成分别对NOx和VOCR的敏感性增强.
英文摘要
      Ozone (O3) pollution has become the primary pollutant in the atmospheric environment of major urban areas in China. Due to the highly nonlinear relationship between O3 and its precursors, the identification of the O3 formation mechanism (OFM) is fundamental to emission restraining. An overview of previous related investigations indicated that it is rather difficult to ideally recognize OFM long-term evolutions with conventional methods. In this study, based on the relationship between ambient temperature and volatile organic compound activity (VOCR) and O3 and NO2 conventional observation data from 2006 to 2020 in the Pearl River Delta (PRD), OFM was identified from the two dimensions of NO2 and temperature. Then, OFM was verified to ensure accuracy. Afterward, O3 concentration and OFM in different periods and temperature levels were analyzed. The results showed that O3 concentration presented a trend of increasing, stabilizing, decreasing, and increasing again with the increase in NO2 and temperature levels. Overall, NOx-limited, transitional, and VOCR-limited corresponded to NO2 in 0-35 μg·m-3, 35-45 μg·m-3, and greater than 45 μg·m-3, and temperature ranged from higher than 30℃, 25-30℃, and lower than 25℃, respectively. VOCR increased with the increase in temperature during different time periods, which promoted O3 to a higher level. O3 concentration in different time periods and temperature levels varied with precursor emission fluctuations in different OFM. On average, during 2006 to 2020, VOCR-limited and transitional were in the west and east of PRD, respectively, and OFM identified from NO2 and temperature dimension were consistent. The transitional tended toward the VOCR-limited in the west, and VOCR-limited in the east of PRD tended toward the NOx-limited with time. O3 formation was more related to NOx as temperature increased, and it became more sensitive to NOx and VOCR at high and low temperatures, correspondingly.

您是第53394595位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2