镧沸石对磷和重金属的吸附与底泥钝化性能 |
摘要点击 2967 全文点击 1895 投稿时间:2022-02-07 修订日期:2022-03-24 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 镧沸石 磷 重金属 疏浚底泥 钝化 |
英文关键词 lanthanum-modified zeolite phosphorus heavy metals sediment inactivation |
|
中文摘要 |
矿业开采加工排放的重金属污染物会进入底泥中,与其中的磷形成复合污染.然而,目前关于底泥钝化的研究多数仅针对单一污染物.考察了新型钝化剂——镧沸石对P、Zn和Pb的吸附性能,及其对疏浚底泥中相应污染物的钝化效果,并通过脱附实验、X射线光电子能谱(XPS)和X射线衍射(XRD)研究了其吸附机制.结果表明,镧沸石对P、Zn和Pb的最大吸附量分别为53.76、27.70和123.45mg ·g-1;预吸附Zn和Pb对镧沸石的除磷性能影响不大,但Zn和Pb的吸附会受到预吸附抑制.投加质量分数0.83%和1.66%的镧沸石后底泥中的P、Zn和Pb均向稳定态/生物难利用形态转化.P、Zn和Pb都可以通过形成内圈络合物被镧沸石吸附,此外静电作用和表面沉淀也分别会对Zn和Pb的吸附形成贡献.投加镧沸石可实现疏浚底泥中磷和重金属的钝化. |
英文摘要 |
Due to the large scale of mining and smelting activities, considerable amounts of heavy metals are discharged into the environment and accumulate in the sediment of rivers and lakes. The combined pollution of heavy metals and the intrinsic phosphorus in sediment calls for novel remediation technologies. In this study, lanthanum-modified zeolite (LMZ) was employed as an inactivation agent for the immobilization of phosphorus, zinc, and lead in sediments. The adsorption capacities as well as the inactivation performance of LMZ for P, Zn, and Pb were investigated, and the adsorption mechanisms were explored via desorption experiments, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The results indicated that the adsorption maximums of LMZ for P, Zn, and Pb were 53.76, 27.70, and 123.45 mg·g-1, respectively. Pre-adsorption of Zn and Pb had a negligible effect on the P adsorption by LMZ, whereas the adsorption of Zn and Pb were inhibited significantly by the pre-adsorption. P, Zn, and Pb in the sediment were transformed to more stable or less bioavailable forms by dosing 0.83% and 1.66% weight percentages of LMZ. It was found that P, Zn, and Pb were adsorbed through the formation of inner-sphere complexes. Further, desorption experiments and XRD patterns suggested that electrostatic attraction and surface precipitation also contributed to the adsorption of Zn and Pb, respectively. |
|
|
|