首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于排放量和大气反应活性的VOCs污染源分级控制
摘要点击 2105  全文点击 708  投稿时间:2021-08-19  修订日期:2021-10-18
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  挥发性有机物(VOCs)  排放特征  臭氧生成潜势(OFP)  二次有机气溶胶(SOA)  污染源分级
英文关键词  volatile organic compounds(VOCs)  emission characteristics  ozone formation potential(OFP)  secondary organic aerosol(SOA)  pollution source classification
作者单位E-mail
陈鹏 北京市生态环境保护科学研究院, 北京 100037 chenp_emma@163.com 
张月 北京市生态环境保护科学研究院, 北京 100037  
邢敏 北京市生态环境保护科学研究院, 北京 100037  
李珊珊 北京市生态环境保护科学研究院, 北京 100037 liss0502@163.com 
中文摘要
      挥发性有机物(VOCs)作为PM2.5和O3共同的关键前体物,是大气污染防控的重要方向.目前我国VOCs的控制政策主要基于VOCs排放量,而没有考虑到VOCs组分其化学反应活性,这将影响VOCs减排对改善空气质量的效果.因此,尝试建立基于VOCs排放量和大气反应活性的VOCs污染源分级控制方法,以北京市为例进行研究.首先,通过采样监测获得了北京市餐饮业、汽修业和加油站这3个典型VOCs污染源的成分谱,并通过文献调研获得了炼油石化、包装印刷、汽车制造、建筑涂装和机动车这5类VOCs污染源的成分谱.然后,分别采用最大增量反应活性(MIR)和气溶胶生成系数(FAC)计算污染源排放单位质量VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP),来表征VOCs污染源对臭氧和二次有机气溶胶的反应活性.在获得北京市各VOCs污染源的排放量(EA)、OFP和SOAFP值后,采用极差法对其进行归一化处理,分别获得归一化指数NEA、NOFP和NSOAFP.最后,计算得到VOCs污染源分级指数(PCI),并根据归一化后的NPCI将VOCs污染源划分为4个等级.结果表明,北京市机动车的NPCI最高(1.00).Ⅰ级VOCs污染源包括机动车(1.00)、汽车制造(0.93)和建筑涂装(0.75).除加油站(0.32)和汽修业(0.30)为Ⅲ级VOCs污染源外,餐饮业(0.19)、炼油石化(0.15)和包装印刷(0)均为Ⅳ级VOCs污染源.北京市应优先管控机动车、汽车制造和建筑涂装,以降低北京市环境空气中臭氧和二次有机气溶胶的生成.
英文摘要
      Volatile organic compounds (VOCs), as the common key precursors of PM2.5 and O3, are an important direction of air pollution prevention and control. The primary VOCs control policy is based on VOCs emissions, without considering the chemical reactivity of VOCs components, which would influence the effects of VOCs emissions to improve air quality. Therefore, this study sought to establish a VOCs pollution source classification control method based on VOCs emissions and atmospheric reactivity, taking Beijing as an example. First, we obtained the composition spectrum of three typical VOCs pollution sources in the catering and automobile repair industries and gas stations in Beijing through detection and obtained the composition spectrum of five types of VOCs pollution sources in the petroleum chemical industry, printing factory, automobile manufacturing, architectural paints, and motor vehicles through literature research. Then, the maximum incremental reactivity (MIR) and fractional aerosol coefficient (FAC) were used to calculate the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of VOCs, to characterize the reactivity of VOCs pollution sources to O3 and SOA, respectively. After obtaining the emission amount (EA), OFP, and SOAFP of VOCs pollution sources in Beijing, the range method was used to normalize them, and the normalized indexes NEA, NOFP, and NSOAFP were obtained, respectively. Finally, the pollution source classification index (PCI) was calculated and VOCs pollution sources were divided into four grades according to the normalized NPCI. The results showed that the NPCI of motor vehicles in Beijing was the highest (1.00). Level Ⅰ VOCs pollution sources also included automotive manufacturing (0.93) and architectural paints (0.75). In addition to the gas station (0.32) and automobile repair industry (0.30) as the level Ⅲ VOCs pollution sources, catering (0.19), the petroleum chemical industry (0.15), and printing factories (0) were all level Ⅳ VOCs pollution sources. Beijing should give priority to the control of motor vehicles, automobile manufacturing, and architectural paints to reduce the generation of O3 and SOA.

您是第52840778位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2