首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
天津市PM2.5-O3复合污染特征及来源分析
摘要点击 2802  全文点击 726  投稿时间:2021-08-16  修订日期:2021-08-29
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  天津  PM2.5  臭氧(O3)  挥发性有机物(VOCs)  臭氧生成潜势(OFP)  SOA生成潜势  来源解析
英文关键词  Tianjin  PM2.5  ozone(O3)  volatile organic compounds(VOCs)  ozone formation potential(OFP)  SOA formation potential  source apportionment
作者单位E-mail
肖致美 天津市生态环境监测中心, 天津 300191 xiaozhimei01@163.com 
徐虹 天津市生态环境监测中心, 天津 300191 xuhong198674@163.com 
高璟贇 天津市生态环境监测中心, 天津 300191  
蔡子颖 天津市环境气象中心, 天津 300074  
毕温凯 天津市生态环境监测中心, 天津 300191  
李鹏 天津市生态环境监测中心, 天津 300191  
杨宁 天津市生态环境监测中心, 天津 300191  
邓小文 天津市生态环境监测中心, 天津 300191  
戢运峰 天津市生态环境监测中心, 天津 300191 yf_2100@163.com 
中文摘要
      为了解天津市PM2.5-O3复合污染特征及来源,基于2017~2019年高时间分辨率PM2.5、O3和挥发性有机物(VOCs)在线监测数据,对复合污染下天津市VOCs浓度水平、化学组成及O3和二次有机气溶胶(SOA)生成潜势来源进行分析.结果表明,2017~2019年,天津市复合污染日为34 d,分布在每年的3~9月,年度变化呈现稳中略升趋势;小时ρ(PM2.5)在75~85 μg·m-3时,小时ρ(O3)存在峰值区(301~326 μg·m-3).复合污染下ρ(VOCs)为72.59 μg·m-3,烷烃、芳香烃、烯烃和炔烃质量分数分别为61.51%、20.38%、11.54%和6.57%;VOCs中浓度较高的前20种物种的浓度均上升,其中乙烷、正丁烷、异丁烷和异戊烷等烷烃类物种质量分数上升,烯烃和炔烃类质量分数略下降,芳香烃类中的苯和1,2,3-三甲苯质量分数略升.复合污染下烷烃、烯烃、芳香烃和炔烃对O3生成潜势贡献率分别为19.68%、39.99%、38.08%和2.25%,烷烃、烯烃、芳香烃对SOA生成潜势贡献率分别为7.94%、2.17%和89.89%.与非复合污染相比,复合污染下烷烃和芳香烃对O3生成潜势贡献率分别上升13.8%和4.3%,对SOA生成潜势贡献率分别上升2.3%和0.2%;烯烃对O3和SOA生成潜势贡献率分别下降9.4%和15.6%;炔烃对O3生成潜势贡献率上升7.7%.复合污染下主要物种中1-戊烯、正丁烷、甲基环戊烷、异戊烷、1,2,3-三甲苯、丙烷、甲苯、乙炔、邻-二甲苯、乙苯、1-乙基-3-甲基苯和间/对-二甲苯对O3生成潜势贡献率上升,2-甲基-1,3-丁二烯对O3生成潜势贡献率下降;苯、1,2,3-三甲苯、甲苯和邻-二甲苯对SOA生成潜势贡献率上升.解析结果表明:复合污染下O3和SOA的生成潜势的来源主要为溶剂使用、机动车排放、石化工业、天然源、LPG、燃烧源、油气挥发和其他源,各源对O3生成潜势贡献率分别为21.9%、16.9%、16.7%、12.4%、8.3%、7.7%、2.9%和13.2%,对SOA生成潜势贡献率分别为46.8%、14.4%、7.1%、11.9%、5.9%、6.6%、1.6%和5.7%,溶剂使用源、机动车排放源和石化工业源是PM2.5-O3复合污染的主要来源.
英文摘要
      The characteristics and sources of PM2.5-O3 compound pollution were analyzed based on the high-resolution online monitoring data of PM2.5, O3 and volatile organic compounds(VOCs) observed in Tianjin from 2017 to 2019. The results showed that total PM2.5-O3 compound pollution was 34 days, which only appeared between March and September and slightly increased by year. The peak value of ρ(O3)(301-326 μg·m-3) appeared when ρ(PM2.5) ranged from 75 μg·m-3 to 85 μg·m-3. During PM2.5-O3 compound pollution, the average ρ(VOCs) was 72.59 μg·m-3, and the chemical compositions of VOCs were alkanes, aromatics, alkenes, and alkynes, accounting for 61.51%, 20.38%, 11.54%, and 6.57% of VOCs concentration on average, respectively. The concentration of the top 20 species of VOCs increased, among which the proportion of alkane species such as ethane, n-butane, isobutane, and isopentane increased; the proportion of alkenes and alkynes decreased slightly; and the proportion of benzene and 1,2,3-trimethylbenzene of aromatic hydrocarbons increased slightly. The ozone formation potential(OFP) contribution of alkanes, alkenes, aromatics, and alkynes were 19.68%, 39.99%, 38.08%, and 2.25%, respectively; the contributions of alkanes, alkenes, and aromatics to secondary organic aerosol(SOA) formation potential were 7.94%, 2.17%, and 89.89%, respectively. Compared with that of non-compound pollution, the contribution of alkanes and aromatics to OFP increased 13.8% and 4.3%, and that to SOA formation potential increased 2.3% and 0.2%, respectively. The contribution of alkenes to OFP and SOA formation potential decreased 9.4% and 15.6%, respectively, and the contribution of alkynes to OFP increased 7.7% in compound pollution. The contributions of main species such as 1-pentene, n-butane, methyl cyclopentane, isopentane, 1,2,3-trimethylene, propane, toluene, acetylene, o-xylene, ethylbenzene, m-ethyltoluene, and m/p-xylene to OFP increased, and that of isoprene to OFP decreased. The contribution of benzene, 1,2,3-trimethylbenzene, toluene, and o-xylene to the potential formation of SOA increased during compound pollution. Positive matrix factorization was applied to estimate the contributions of sources to OFP and SOA formation potential in compound pollution, solvent usage, automobile exhaust, petrochemical industrial emission, natural source, liquefied petroleum gas(LPG) evaporation, combustion source, gasoline evaporation, and other industrial process sources were identified as major sources of OFP and SOA formation potential; the contributions of each source to OFP were 21.9%, 16.9%, 16.7%, 12.4%, 8.3%, 7.7%, 2.9%, and 13.2%, respectively, and to SOA formation potentials were 46.8%, 14.4%, 7.1%, 11.9%, 5.9%, 6.6%, 1.6%, and 5.7%, respectively. Solvent usage, automobile exhaust, and petrochemical industrial emissions were main sources for PM2.5-O3 compound pollution.

您是第53246494位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2