首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
华中地区夏季PM2.5中水溶性离子污染特征及来源分析
摘要点击 2712  全文点击 717  投稿时间:2021-06-25  修订日期:2021-07-24
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  PM2.5  水溶性离子  污染特征  主成分-多元线性回归(PCA-MLR)  潜在源区  华中地区
英文关键词  PM2.5  water-soluble ions  pollution characteristics  PCA-MLR  potential source area  central China
作者单位E-mail
苏业旺 中国地质大学(武汉)环境学院, 武汉 430074 suyw0224@163.com 
刘威杰 中国地质大学(武汉)环境学院, 武汉 430074  
毛瑶 中国地质大学(武汉)生物地质与环境地质国家重点实验室, 武汉 430074  
程铖 中国地质大学(武汉)环境学院, 武汉 430074  
石明明 中国地质大学(武汉)环境学院, 武汉 430074  
许安 中国地质大学(武汉)环境学院, 武汉 430074  
李星谕 中国地质大学(武汉)环境学院, 武汉 430074  
胡天鹏 中国地质大学(武汉)环境学院, 武汉 430074  
祁士华 中国地质大学(武汉)生物地质与环境地质国家重点实验室, 武汉 430074  
邢新丽 中国地质大学(武汉)环境学院, 武汉 430074
中国地质大学(武汉)生物地质与环境地质国家重点实验室, 武汉 430074 
xlxing@cug.edu.cn 
中文摘要
      为探究我国华中地区不同区域夏季大气PM2.5中水溶性离子污染特征及来源,选取武汉、随州和平顶山分别作为城市、郊区和农村监测站点进行大气PM2.5样品采集,分析了大气中PM2.5质量浓度以及8种水溶性无机离子含量.结果表明,采样期间3个站点ρ(水溶性离子)呈明显的空间分布特征,即:平顶山[(36.29±9.82)μg·m-3] > 武汉[(32.55±10.05)μg·m-3] > 随州[(26.10±6.23)μg·m-3],分别占PM2.5的质量分数为52.47%、51.32%和48.61%,平顶山站点由于农村生物质燃烧活动,水溶性离子占比最大,其中,二次离子(SNA)是主要的离子成分,分别占总水溶性离子的95.65%、96.12%和97.33%.武汉(0.64)和随州(0.63)站点硫氧化率均值高于平顶山站点(0.50),而武汉(0.18)和平顶山(0.19)站点氮氧化率高于随州站点(0.15),站点间硫氧化率和氮氧化率差异分别受二次转化机制和站点富氨环境及周边交通源影响.武汉和平顶山站点的PM2.5整体呈碱性,随州站点则呈中性或弱酸性,主要由NH4+差异造成.NH4+在武汉和平顶山站点主要以(NH42SO4和NH4NO3形式存在,随州站点则主要以(NH42SO4和(NH4)HSO4的形式存在.主成分-多元线性回归(PCA-MLR)分析表明,武汉(89.27%)和随州(67.38%)站点受二次转化源影响最大,同时武汉站点还受到工业源(8.54%)和燃煤源(2.27%)影响,随州站点的污染来源还包括生物质燃烧(24.42%)和扬尘源(8.25%),平顶山站点受生物质燃烧影响最大(58.37%),其次为扬尘及燃烧源(38.05%)和交通源(3.58%).SNA离子潜在污染源区(PSCF)分析表明,武汉站点主要潜在源区为湖北、河南和安徽交界处及安徽西南区域,随州和平顶山受到长距离传输影响,主要潜在源区从东部沿海开始在自东向西分布在上海、江苏和安徽等地.
英文摘要
      In order to investigate the pollution characteristics and sources of water-soluble ions in atmospheric PM2.5 in different regions of central China during summer, Wuhan, Suizhou, and Pingdingshan were selected as urban, suburban, and rural monitoring stations, respectively, to collect PM2.5 samples, and the mass concentration of PM2.5 in the atmosphere and the contents of eight water-soluble ions were analyzed. The results showed that ρ(water-soluble ions) at the three sites showed obvious spatial distribution characteristics, with Pingdingshan[(36.29±9.82) μg·m-3] > Wuhan[(32.55±10.05) μg·m-3] > Suizhou[(26.10±6.23) μg·m-3], accounting for 52.47%, 51.32%, and 48.61% of the PM2.5 mass concentration, respectively. In the Pingdingshan station, the proportion of water-soluble ions was the largest due to biomass combustion in the rural area. Additionally, SNA (SO42-, NO3-, and NH4+) were the main ionic components, accounting for 95.65%, 96.12%, and 97.33% of the total water-soluble ions, respectively. The mean values of SOR of the Wuhan (0.64) and Suizhou (0.63) stations were higher than that of the Pingdingshan station (0.50), whereas the NOR values of the Wuhan (0.18) and Pingdingshan (0.19) stations were higher than that of the Suizhou station (0.15). The difference in SOR and NOR among stations was affected by the secondary conversion mechanism, the ammonia-rich environment, and the surrounding traffic sources, respectively. The PM2.5 at the Wuhan and Pingdingshan stations was in general alkaline, whereas at the Suizhou station it was neutral or weakly acidic, which was mainly caused by differences in NH4+. NH4+ mainly existed in the form of (NH4)2SO4 and NH4NO3 at the Wuhan and Pingdingshan stations, whereas at the Suizhou station it mainly existed in the form of (NH4)2SO4 or (NH4)HSO4. PCA-MLR analysis revealed that the Wuhan (89.27%) and Suizhou (67.38%) stations were the most affected by secondary conversion sources, whereas the Wuhan station was also affected by industrial sources (8.54%) and coal sources (2.27%). The pollution sources of the Suizhou station also included biomass combustion (24.42%) and dust sources (8.25%). The Pingdingshan station was most affected by biomass combustion (58.37%), followed by dust and combustion sources (38.05%) and traffic sources (3.58%). The analysis of potential sources of SNA (PSCF) showed that the main potential source areas of Wuhan were the boundary of Hubei, Henan, and Anhui and the southwest area of Anhui. Suizhou and Pingdingshan were affected by long-distance transport, and the main potential source regions were distributed in Shanghai, Jiangsu, and Anhui provinces from the east coast to the west.

您是第53242791位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2