李家河水库春季分层期nirS型反硝化菌群特征分析 |
摘要点击 2794 全文点击 1138 投稿时间:2021-04-05 修订日期:2021-06-02 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 李家河水库 氮污染 nirS型反硝化细菌 Illumina高通量测序 RDA分析 |
英文关键词 Lijiahe Reservoir nitrogen pollution nirS denitrifying bacteria Illumina high-throughput sequencing RDA analysis |
作者 | 单位 | E-mail | 梁伟光 | 西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安 710055 西安建筑科技大学环境与市政工程学院, 陕西省环境工程重点实验室, 西安 710055 | liangweiguang@xauat.edu.cn | 黄廷林 | 西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安 710055 西安建筑科技大学环境与市政工程学院, 陕西省环境工程重点实验室, 西安 710055 | huangtinglin@xauat.edu.cn | 张海涵 | 西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安 710055 西安建筑科技大学环境与市政工程学院, 陕西省环境工程重点实验室, 西安 710055 | | 杨尚业 | 西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安 710055 西安建筑科技大学环境与市政工程学院, 陕西省环境工程重点实验室, 西安 710055 | | 刘凯文 | 西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安 710055 西安建筑科技大学环境与市政工程学院, 陕西省环境工程重点实验室, 西安 710055 | | 李程遥 | 西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安 710055 西安建筑科技大学环境与市政工程学院, 陕西省环境工程重点实验室, 西安 710055 | | 温成成 | 西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安 710055 西安建筑科技大学环境与市政工程学院, 陕西省环境工程重点实验室, 西安 710055 | | 李伟涛 | 李家河水库管理有限公司, 西安 710016 | | 蔡晓春 | 李家河水库管理有限公司, 西安 710016 | |
|
中文摘要 |
为探究水源水库春季分层期(3~5月)nirS型反硝化细菌群落结构组成及其与水质的关系,以李家河水库为例,采用原位监测耦合Illumina高通量测序技术,分析了水体水质及反硝化细菌群落相对丰度及结构特征.结果表明:①通过高通量测序,鉴定为4门13属,优势菌门为变形菌门(Proteobacteria),相对丰度在52.5%~70.6%,时间尺度总体呈降低趋势(P<0.05),空间尺度上表层和中层高于底层(P<0.05),表层与中层无差异(P>0.05);识别出具有反硝化功能细菌8属,其中优势菌属(相对丰度>1%)为脱氯单胞菌属(Dechloromonas)和假单胞菌属(Pseudomonas),脱氯单胞菌属相对丰度在时间上呈先降低后升高的趋势,假单胞菌属在时间上呈先升高后降低的趋势,此2属在空间上无差异(P>0.05);细菌多样性及丰富度变化基本一致,时间上呈先升高后减低的趋势,空间上随深度逐渐升高;②本研究期间水库水体ρ(总氮)为2.35~2.91 mg·L-1,氮素污染较为严重,3月和4月垂向水体总氮基本一致且呈降低趋势,5月ρ(总氮)高于3月和4月且表层最高;③冗余分析(RDA)表明,主要驱动因素为水温、溶解氧、硝氮和氨氮,且氨氮与脱氯单胞菌属呈明显负相关.综上,通过对水源水库nirS型反硝化群落以及其影响因素的研究,有助于解析微污染水源水库反硝化细菌的群落变化特征,可对未来水源水体氮污染生物修复提供理论研究依据. |
英文摘要 |
To explore the composition of the nirS denitrifying bacterial community during stratification in spring(March to May) in a drinking water reservoir and its relationship with water quality, the water quality and relative abundance and structure of the denitrifying bacterial community were analyzed using in-situ monitoring coupled with Illumina high-throughput sequencing technology in the Lijiahe Reservoir. The results showed that:① through high-throughput sequencing, 4 phyla and 13 genera were identified. The dominant bacterial phylum was Proteobacteria, and its relative abundance was between 52.5% and 70.6%. The overall trend of the relative abundance of Proteobacteria decreased on the time scale (P<0.05), and its relative abundance in the surface and middle layers was higher than that of the bottom layer on the spatial scale (P<0.05). There was no difference in the proportion of Proteobacteria between the surface and middle layers (P>0.05), and the abundance of its bottom layer was relatively stable; eight genera of bacteria with denitrification function were identified, among which the dominant bacterial genera (relative abundance>1%) were Dechloromonas and Pseudomonas. The relative abundance of Dechloromonas showed a trend of first decreasing and then increasing on the time scale, whereas the relative abundance of Pseudomonas showed a trend of increasing first and then decreasing on the time scale. There were no differences on the spatial scale between these two genera (P>0.05); the changes in bacterial diversity and abundance were basically similar, with a trend of first increasing and then decreasing on the time scale. The highest diversity and abundance of the bacterial community gradually increased with increasing depth on the spatial scale. ② ρ(TN) of the reservoir during stratification was 2.35-2.91 mg·L-1, and the nitrogen pollution was more serious. In March and April, ρ(TN) on the vertical scale was basically similar and showed a decreasing trend. In May, the content of total nitrogen was higher than that in March and April, and the highest value of total nitrogen content occurred in the surface layer. ③ Redundancy analysis showed that water temperature, dissolved oxygen, nitrate, and ammonia nitrogen were the main driving factors, and ammonia nitrogen showed a significantly negative correlation with Dechlormonas. In summary, the study of nirS-type denitrification communities and related influencing factors will contribute to analyzing the characteristics of denitrifying bacterial community changes in a micro-polluted drinking water reservoir and provide a theoretical research basis for the biological remediation of nitrogen pollution in such reservoirs in the future. |
|
|
|