铁碳微电解填料对人工湿地温室气体排放的影响 |
摘要点击 3295 全文点击 1038 投稿时间:2020-11-29 修订日期:2020-12-27 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 人工湿地 甲烷 氧化亚氮 铁碳微电解 沸石 |
英文关键词 constructed wetland methane nitrous oxide ferric-carbon micro-electrolysis zeolite |
作者 | 单位 | E-mail | 赵仲婧 | 西南大学资源环境学院, 西南山地生态循环农业国家级培育基地, 重庆 400716 | 895878117@qq.com | 郝庆菊 | 西南大学资源环境学院, 西南山地生态循环农业国家级培育基地, 重庆 400716 三峡库区生态环境教育部重点实验室, 重庆 400715 | | 涂婷婷 | 西南大学资源环境学院, 西南山地生态循环农业国家级培育基地, 重庆 400716 | | 胡曼利 | 西南大学资源环境学院, 西南山地生态循环农业国家级培育基地, 重庆 400716 | | 张尧钰 | 西南大学资源环境学院, 西南山地生态循环农业国家级培育基地, 重庆 400716 | | 江长胜 | 西南大学资源环境学院, 西南山地生态循环农业国家级培育基地, 重庆 400716 三峡库区生态环境教育部重点实验室, 重庆 400715 | jiangcs@126.com |
|
中文摘要 |
随着全球气候变暖的问题日益严重,人工湿地中温室气体的减排措施也受到越来越多的关注.铁碳微电解填料对废水处理效果良好且具备温室气体减排的潜力,为探究铁碳微电解对间歇曝气人工湿地温室气体排放的影响,本研究构建了以铁碳微电解填料+砾石(湿地Ⅰ)、铁碳微电解填料+沸石(湿地Ⅱ)、沸石(湿地Ⅲ)以及砾石(湿地Ⅳ)为基质的4组人工湿地,并利用间歇曝气技术对湿地系统进行了增氧.结果表明,铁碳微电解填料显著提高了间歇曝气人工湿地的脱氮效果,且具备对人工湿地温室气体的减排作用.与湿地Ⅳ相比,湿地Ⅰ、Ⅱ和Ⅲ的CH4排放通量分别平均降低了32.81%(P<0.05)、52.66%(P<0.05)和54.50%(P<0.05),其中沸石对CH4的减排效果较优,能显著降低曝气段和非曝气段人工湿地CH4的排放.铁碳微电解填料明显减少了N2O的排放,与湿地Ⅳ相比,湿地Ⅰ和Ⅱ分别实现N2O减排30.29%~60.63%(P<0.05)和43.10%~73.87%(P<0.05).各组湿地系统在典型周期内排放的CH4和N2O引起的综合GWP(以CO2-eq计)分别为(85.21±6.48)、(49.24±3.52)、(127.97±11.44)和(137.13±11.45)g·m-2,铁碳微电解填料与沸石的联合使用有效实现了人工湿地温室气体的减排.总体而言,湿地Ⅱ在间歇曝气的条件下对污水净化效果最好,温室气体的减排效果最佳. |
英文摘要 |
As the problem of global warming becomes increasingly serious, the greenhouse gas (GHG) emission reduction measures of constructed wetlands (CWs) have drawn significant attention. Ferric-carbon micro-electrolysis exhibits an excellent effect on wastewater purification as well as the potential to reduce GHG emissions. Therefore, to explore the impact of ferric-carbon micro-electrolysis on GHG emissions from intermittent aeration constructed wetlands, four kinds of different wetlands with different fillers were constructed. The four fillers were ferric-carbon micro-electrolysis filler+gravel (CW-Ⅰ), ferric-carbon micro-electrolysis filler+zeolite (CW-Ⅱ), zeolite (CW-Ⅲ), and gravel (CW-Ⅳ). Intermittent aeration technology was used to aerate the wetland systems. The results show that ferric-carbon micro-electrolysis significantly improved the nitrogen removal efficiency of the intermittent aeration constructed wetlands and reduced GHG emissions. Compared with CW-Ⅳ, the CH4 fluxes of CW-Ⅰ, CW-Ⅱ, and CW-Ⅲ decreased by 32.81% (P<0.05), 52.66% (P<0.05), and 54.50% (P<0.05), respectively. Among them, zeolite exhibited a stronger reduction effect on CH4 emissions in both the aeration and non-aeration sections. The ferric-carbon micro-electrolysis substantially reduced N2O emissions. In comparison with CW-Ⅳ, CW-, and CW-Ⅱ achieved N2O emission reduction by 30.29%-60.63% (P<0.05) and 43.10%-73.87% (P<0.05), respectively. During a typical hydraulic retention period, the comprehensive GWP caused by CH4 and N2O emitted by each group of wetland system are (85.21±6.48), (49.24±3.52), (127.97±11.44), and (137.13±11.45) g·m-2, respectively. The combined use of ferric-carbon micro-electrolysis and zeolite effectively reduces GHG emissions in constructed wetlands. Overall, ferric-carbon micro-electrolysis combined with zeolite (CW-Ⅱ) can be regarded as one of the valuable filler combination methods for constructed wetlands, which can ensure high removal efficiency of pollutants and effective GHG emission reduction in constructed wetlands. |
|
|
|