首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
太湖流域上游南苕溪水系夏秋季水体溶存二氧化碳和甲烷浓度特征及影响因素
摘要点击 3304  全文点击 764  投稿时间:2020-09-09  修订日期:2020-11-29
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  南苕溪  不同土地利用类型  溶存二氧化碳浓度  溶存甲烷浓度  空间差异
英文关键词  Nantiaoxi River  different land use types  dissolved CO2 concentration  dissolved CH4 concentration  spatial difference
作者单位E-mail
梁佳辉 浙江农林大学省部共建亚热带森林培育国家重点实验室, 杭州 311300
浙江农林大学环境与资源学院, 杭州 311300 
jhliang2018@163.com 
田琳琳 浙江农林大学省部共建亚热带森林培育国家重点实验室, 杭州 311300
浙江农林大学林业与生物技术学院, 杭州 311300 
 
周钟昱 浙江农林大学省部共建亚热带森林培育国家重点实验室, 杭州 311300
浙江农林大学林业与生物技术学院, 杭州 311300 
 
张海阔 浙江农林大学省部共建亚热带森林培育国家重点实验室, 杭州 311300
浙江农林大学环境与资源学院, 杭州 311300 
 
张方方 浙江农林大学环境与资源学院, 杭州 311300  
何圣嘉 浙江农林大学环境与资源学院, 杭州 311300  
蔡延江 浙江农林大学省部共建亚热带森林培育国家重点实验室, 杭州 311300
浙江农林大学环境与资源学院, 杭州 311300 
yjcai@zafu.edu.cn 
中文摘要
      内陆水体是重要的活性碳(C)汇和温室气体潜在排放源.为查明太湖流域上游南苕溪水系夏秋季水体溶存二氧化碳(CO2)和甲烷(CH4)浓度特征及影响因素,于2019年7~11月进行水样采集,采用水-气顶空平衡-气相色谱法测定水体溶存CO2浓度[cobs(CO2)]和CH4浓度[cobs(CH4)],同步测定水体物理化学指标,分析水体cobs(CO2)和cobs(CH4)变化的主要影响因素.结果表明,观测期内南苕溪水体cobs(CO2)及其饱和度[R(CO2)]和cobs(CH4)及其饱和度[R(CH4)]的均值分别为(505.47±16.99)μg·L-1、(256.31±8.32)%和(1.88±0.09)μg·L-1、(5218.74±264.30)%;所有观测点位R(CO2)和R(CH4)均大于100%,表明南苕溪水体为CO2和CH4的潜在释放源.农业区水体cobs(CO2)最高、居民点区次之、森林区最低,3种土地利用类型区水体间差异显著;居民点区水体cobs(CH4)显著高于农业区与森林区.水体cobs(CO2)、R(CO2)、cobs(CH4)和R(CH4)均与氧化还原电位(ORP)负相关(P<0.01),与电导率(EC)正相关(P<0.01).叶绿素a(Chl-a)、硝态氮(NO3--N)、总氮(TN)浓度和EC的差异是造成不同土地利用类型区水体cobs(CO2)显著差异的主要原因;农业区和居民点区水体中较高的氮污染物浓度还可促进浮游植物生长并产生更活跃的呼吸作用,最终使两类型区水体cobs(CO2)显著较高.居民点区水体中较高的可溶性有机碳(DOC)和铵态氮(NH4+-N)浓度及水温(WT)是导致该类型区水体cobs(CH4)较高的主要原因.降雨对流域内不同土地利用类型区水体cobs(CO2)和cobs(CH4)都产生一定的影响,雨后农业区水体氮污染物浓度增大和居民点区水体DOC浓度增加分别是造成农业区水体cobs(CO2)和居民点区水体cobs(CH4)较高的主要原因.
英文摘要
      Inland waters are vital sinks for active carbon (C) and potential sources of greenhouse gas emissions. In this study, the characteristics of dissolved carbon dioxide (CO2) and methane (CH4) concentrations in the Nantiaoxi River system in the upper reaches of the Taihu Lake basin were observed between Jul. 2019 and Nov. 2019 (summer and autumn) using headspace equilibration-gas chromatography. Simultaneously, physical and chemical parameters were also determined to understand the factors influencing dissolved CO2 and CH4 concentrations. The results showed that the mean dissolved CO2 concentrations and saturation levels in water were (505.47±16.99) μg·L-1 and (256.31±8.32)%, respectively, and the corresponding values for CH4 were (1.88±0.09) μg·L-1 and (5218.74±264.30)%, respectively. The saturation levels of dissolved CO2 and CH4 at all observation points were greater than 100%, indicating that the Nantiaoxi River system is a potential source of CO2 and CH4. The highest mean dissolved CO2 concentrations in water were found in agricultural areas followed by residential and forest areas, and there were significant differences among the three land-use types. The mean dissolved CH4 concentrations in the water in residential areas were significantly higher than those in agricultural area forest areas. The dissolved CO2 concentrations, saturation levels of CO2, dissolved CH4 concentrations, and saturation levels of CH4 in water were all negatively correlated with oxidation reduction potential (ORP) (P<0.01) and positively correlated with electrical conductivity (EC) (P<0.01). The discrepancies in chlorophyll (Chl-a), nitrate (NO3--N), total nitrogen (TN), and EC were the main reasons for differences in dissolved CO2 concentrations among the different land use types. Phytoplankton growth could be promoted by the higher input of nitrogen pollutants into rivers in agricultural and residential areas, and respiration could be also enhanced, resulting in higher dissolved CO2 concentrations. The higher concentrations of dissolved organic carbon (DOC) and ammonium nitrogen (NH4+-N) in the water, and the water temperature in residential areas, were probably the main causes of the higher dissolved CH4 concentrations. Rainfall also had some influence on dissolved CO2 and CH4 concentrations in the water associated with the different land use types. Specifically, higher concentrations of nitrogen pollutants and the enhancement of DOC were the main drivers of high dissolved CO2 concentrations in agricultural areas as well as the higher dissolved CH4 concentrations in residential areas following rainfall events.

您是第52904269位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2