首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
输送、滞留叠加海上回流的长时间沙尘天气影响判断及贡献分析
摘要点击 2452  全文点击 680  投稿时间:2020-06-11  修订日期:2020-08-03
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  沙尘过程  回流沙尘  沙尘示踪物  起止时间  WRF-CMAQ数值模拟  沙尘贡献
英文关键词  dust process  back-flow dust  tracer components  beginning and ending time  WRF-CMAQ model  dust contribution
作者单位E-mail
张哲 南昌航空大学环境与化学工程学院, 南昌 330063
上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233 
signorcheung@163.com 
乔利平 上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233 qiaolp@saes.sh.cn 
周敏 上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
黄丹丹 上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
安静宇 上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
郭会琴 南昌航空大学环境与化学工程学院, 南昌 330063
江西省持久性污染物控制与资源循环利用重点实验室, 南昌 330063 
guohuiqin@nchu.edu.cn 
王红丽 上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
黄成 上海市环境科学研究院国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233  
董赵鑫 清华大学环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100084
国家环境保护大气复合污染来源与控制重点实验室, 北京 100084 
 
王书肖 清华大学环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100084
国家环境保护大气复合污染来源与控制重点实验室, 北京 100084 
 
中文摘要
      于2019年10月15日~11月7日对上海大气中颗粒物的质量浓度和PM2.5的化学组分进行了在线连续观测,期间,华东地区遭遇了一次大范围的沙尘过程.根据相关规定,结合沙尘示踪组分和WRF-CMAQ数值模拟,将观测过程分为4个阶段:沙尘前、沙尘Ⅰ(输送和滞留过程)、沙尘Ⅱ(海上回流和清除过程)和沙尘后.基于相关规定、沙尘示踪物和空气质量模型这3种方法判定的沙尘开始时间为10月29日08:00~09:00,但结束时间存在明显分歧:相关规定的判定方法无法对海上回流的沙尘气团进行识别;不同示踪物判断的沙尘结束时间有明显差异;WRF-CMAQ模型虽然能够较好地模拟沙尘的时间变化趋势,但对于短期滞留的沙尘和海上回流沙尘存在高估.沙尘天气中PM10、PM2.5和无机元素的质量浓度显著高于非沙尘天,最高日均浓度出现在10月29日,分别为(234.8±125.5)、(76.8±22.5)和(17.54±10.5)μg·m-3.沙尘期间地壳元素对PM2.5的浓度贡献显著升高,二次离子(SO42-、NO3-和NH4+)对PM2.5的浓度贡献明显降低,沙尘Ⅰ和沙尘Ⅱ过程Al、Si、Ca和Fe这4种地壳元素占PM2.5的质量分数分别为23.5%和13.7%,二次离子分别占PM2.5的质量分数为24.3%和41.9%.PMF源解析法、Ca含量丰度法、沙尘源区PM2.5/PM10比值法和地壳物质重构法表明,沙尘颗粒对PM2.5的直接浓度贡献为43.4%~50.0%,回流沙尘对PM2.5的浓度贡献为19.2%~24.7%.
英文摘要
      Continuous on-line observation of particulate matter and PM2.5 chemical composition was conducted from October 15th to November 7th 2019 in East China. During the observation period, a wide range of dust-related processes took place. According to supplementary urban air quality assessment affected by dust (hereafter referred to as supplementary provisions), the observations were divided into four stages including pre-dust event, dust Ⅰ, dust Ⅱ, and post-dust event. The dust Ⅰ stage represented the processes of transportation and retention, while the dust Ⅱ stage represented processes of backflow from the sea and scavenging. The start time of the studied dust event was October 29th 08:00-09:00 based on the supplementary provisions, dust tracers, and air quality models; however, disagreements existed between these data sources with respect to the finishing time. The supplementary provisions could not effectively distinguish backflow dust from sea, and results from different dust tracers were variable. The WRF-CMAQ model simulated dust variation trends well but overestimated short-term suspended dust and backflow dust. PM10, PM2.5, and trace element concentrations were much higher during dust events than during non-dust periods, with highest daily concentrations of (234.8±125.5), (76.8±22.5), and (17.54±10.5) μg·m-3, respectively, which occurred on October 29th. During the dust event, concentration of crustal elements were remarkably high in PM2.5. At the same time, secondary ions (SO42-, NO3-, and NH4+) contributed less to PM2.5 mass concentrations. Four major crustal elements (Al, Si, Ca, and Fe) accounted for 23.5% and 13.7% of the mass concentration of PM2.5 and secondary ions accounted for 24.3% and 41.9% during dust Ⅰ and dust Ⅱ stages, respectively. Based on PMF source apportionment, Ca abundance, PM2.5/PM10 in dust sources, and the reconstruction of crustal material, dust particulates accounted for 43.4%-50.0% of PM2.5 and backflow dust accounted for 19.2%-24.7% of PM2.5.

您是第53381507位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2