首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
成都地区黑碳气溶胶变化特征及其来源解析
摘要点击 2483  全文点击 963  投稿时间:2019-08-22  修订日期:2019-11-08
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  黑碳(BC)  变化特征  来源解析  后向轨迹  成都
英文关键词  black carbon(BC)  variation characteristics  source apportionment  backward trajectory  Chengdu
作者单位E-mail
王璐 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225
金溪县气象局, 抚州 344800 
1574229596@qq.com 
袁亮 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 yuanl_nuist@outlook.com 
张小玲 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225
京津冀环境气象预报预警中心, 北京 100089 
 
贾月涛 乌拉特中旗气象局, 巴彦淖尔 015300  
中文摘要
      利用7波段黑碳仪(AE-33)于2017年12月1日至2018年11月30日在成都测量黑碳(BC)质量浓度,获得了成都地区BC浓度变化特征,并基于黑碳仪模型和后向轨迹模型对BC排放来源和潜在源区进行了分析.结果表明,成都地区BC浓度冬季最大(8.18 μg·m-3),其次为春季(5.11 μg·m-3)和秋季(3.91 μg·m-3),夏季最小(3.28 μg·m-3),年平均浓度(标准差)为5.26(4.67)μg·m-3.各季节BC浓度日变化受边界层和交通排放高峰的影响呈现出早晚双峰结构.黑碳来源解析结果表明,液体燃料(如交通排放)对BC质量浓度的贡献在各季节均占主要地位,其中夏季最高,冬季最低.受交通早晚高峰的影响,液体燃料对BC的贡献在各季节均呈现早晚峰值,夜间固体燃料排放贡献有所增加.潜在源贡献分析(PSCF)和浓度轨迹权重分析(CWT)的结果表明,成都各季节BC的潜在源区受到气团来源的影响稍有差异,但主要以成都周边及以东至重庆局地区域(川渝城市群)的影响为主,该区域对成都BC的贡献值也较高,且主要为液体燃料燃烧贡献.此外陕西南部和甘肃南部也存在BC的潜在源区,夏季在广西和贵州等地也存在源区分布,但贡献值较小.
英文摘要
      Black carbon (BC) was measured at Chengdu from December 1, 2017, to November 30, 2018, using a seven-channel aethalometer (AE-33). The variation characteristics of BC were obtained. BC sources were explored based on the aethalometer model and a hybrid single particle Lagrangian integrated trajectory model (Hysplit-4). The results showed the BC concentration was the highest in the winter (8.18 μg·m-3) with the monthly mean of 11.11 μg·m-3 peaking in December, followed by the spring (5.11 μg·m-3) and autumn (3.91 μg·m-3), and was the lowest in summer (3.28 μg·m-3) with the lowest monthly mean of 2.30 μg·m-3 in July. The annual average concentration of BC was 5.26 μg·m-3 with a standard deviation of 4.27 μg·m-3. The diurnal variations of BC showed typical bimodal patterns in four seasons mainly due to the influence of the boundary layer and traffic rush. The source apportionment of BC showed that the liquid fuel (e.g., vehicle emission) had higher contribution to total BC concentration during all seasons (ranging from 69% in winter to 82% in summer) than solid fuel (e.g., coal and biomass combustion). The contribution of liquid fuel to the total BC was higher in summer, while solid fuel had a higher contribution in winter. The diurnal cycles of BC source apportionment demonstrated that the contribution of liquid fuel increased in the rush hours. The results of potential source contribution function and concentration weighted trajectory showed that the potential sources of BC in Chengdu were slightly different in different seasons and were mainly affected by the different air mass sources. However, the main potential source regions were the surrounding areas of Chengdu and the areas between Chengdu and Chongqing (the Chuanyu City group). The mass contribution to the BC in Chengdu was high in the region where liquid fuel most affected the total BC. Additionally, the southern part of Shaanxi and the southern part of Gansu were also potential sources of BC, and in Summer, some regions in Guangxi and Guizhou could become the source regions of BC in Chengdu.

您是第52995686位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2