首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
不同排海方式城市尾水微生物扩散规律
摘要点击 1827  全文点击 687  投稿时间:2017-09-09  修订日期:2017-10-26
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  污水处理  水体细菌  群落结构  扩散规律  高通量测序
英文关键词  sewage treatment  bacteria in water  community structure  diffusion  high-throughput sequencing
作者单位E-mail
郎秀璐 青岛理工大学环境与市政工程学院, 青岛 266033 langxiulu@sina.com 
宋志文 青岛理工大学环境与市政工程学院, 青岛 266033  
徐爱玲 青岛理工大学环境与市政工程学院, 青岛 266033 xalcsu@sina.com 
牛成洁 青岛理工大学环境与市政工程学院, 青岛 266033  
郭明月 青岛理工大学环境与市政工程学院, 青岛 266033  
中文摘要
      尾水中含有大量病原菌,回用或排入自然水体后会对人群健康和生态安全构成威胁.为了探究不同排海方式对微生物扩散规律的影响,本研究利用高通量测序技术对春季污水处理厂尾水细菌群落结构、优势菌群、典型致病菌及其随扩散距离的变化进行研究.结果发现,先排河后排海的尾水物种更加丰富,分布在58个菌纲,相对丰度大于1%的细菌有32种,而直接排海的尾水中仅有41个菌纲,相对丰度大于1%的细菌有28种.相对于直排过程,间排方式微生物群落结构相对丰度更高,说明尾水的直接排海使得微生物更易扩散.同一污水处理厂优势菌门所占比例随着扩散距离的增大整体呈下降趋势,蓝藻菌门(Cyanobacteria)等由于在自然水体中的高浓度出现随扩散距离增大整体上升的趋势.两个系统的优势菌门都属于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)及厚壁菌门(Firmicutes),纲、种水平重合度较低,但整体来讲排污口附近微生物多样性及丰度远高于海水(空白样品),且污水处理相关菌种丰度较高.另外,尾水中存在一定量的致病菌和条件致病菌,其中Pseudoalteromonas haloplanktis、Pseudomonas anguilliseptica致病性极强,扩散后相对丰度仍然很高,且弓形杆菌属(Arcobacter spp.)与人类和动物的腹泻、菌血症等疾病密切相关.因此,尾水排放过程中应对这几种细菌重点监测.
英文摘要
      Numerous pathogens exist in treated wastewater, leading to possible population health and ecological security risks when treated waste water is reused or discharged. To investigate the influence of different patterns of discharge on microbial diffusion in the municipal treated waste water, high-throughput sequencing technology was used to analyze the bacterial community structure, dominant flora, and typical pathogens. It was found that those bacteria were distributed in 58 classes. There were 32 species with a relative abundance of more than 1%. While there were only 41 classes in the water sample taken as a direct discharge to the sea, and there were 28 species with relative abundances of more than 1%. The water sample collected as a discharge to the sea through a river displayed higher bacterial diversity than the sample collected as a direct discharge to the sea, indicating that the microorganisms in the treated waste water was more likely to diffuse in when directly discharged to the sea. The relative abundance of dominant bacteria decreased with an increase in the diffusion distance, while the relative abundance of Cyanobacteria increased as the diffusion distance increased. The relative abundance in the water sample collected as a discharge to the sea through a river was higher. The dominant bacteria in the two systems are to Proteobacteria, Bacteroidetes, and Firmicutes. However, the dominant bacteria at the class and species levels quite dissimilar in the two systems. The bacterial diversities near the outfall were much higher than that in the seawater (blank sample), and the abundance was higher, which related to sewage treatment. In addition, there was a certain amount of pathogens and potential pathogens, including Pseudoalteromonas haloplanktis and Pseudomonas anguilliseptica, which were highly pathogenic. Their relative abundances were still higher after dilution. Arcobacter spp. was related to human and animal diarrhea and bacterial and other diseases. Therefore, the detection of these types of bacteria when the treated waste water is discharged is very important.

您是第53064505位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2