藻细胞和高岭土的存在对病毒MS2存活的影响 |
摘要点击 2526 全文点击 1837 投稿时间:2014-01-10 修订日期:2014-03-22 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 藻 高岭土 病毒 钙硬度 存活 |
英文关键词 algae kaolinite bacteriophage Ca2+ hardness survival |
|
中文摘要 |
选用病毒MS2作为水中肠道病毒的指示病毒,高岭土和铜绿微囊藻分别作为无机颗粒物和有机颗粒物,研究颗粒物浓度、 pH值、 不同价态离子浓度、 天然有机物(NOM)等水质条件下,无机(高岭土)、 有机(铜绿微囊藻)颗粒物存在对病毒MS2存活的影响. 结果表明,无机颗粒物高岭土对病毒MS2的存活无明显影响,但当水体钙硬度(钙离子产生的硬度)较大时,病毒MS2的表观存活量增加1个对数;铜绿微囊藻的存在会导致病毒MS2的存活量降低1个对数左右,但当溶液的pH值大于4.0或铜绿微囊藻的浓度小于1.0×106cells·L-1时,藻类对病毒的生存无明显影响;当水体钙硬度较大时,藻反而会增加病毒MS2的存活对数. 因此在高浊水、 高藻水中,水的钙硬度增加会使水体中病毒生存能力变强,进而增加饮用水的安全风险. |
英文摘要 |
In this study, Bacteriophage MS2, Kaolinite and Microcystis aeruginosa were selected as model materials for human enteric viruses, inorganic and organic particles, respectively. The influence of the inorganic (Kaolinite) or organic (Microcystis aeruginosa) particles on the survival of MS2 at different conditions, such as particles concentration, pH, ion concentration and natural organic matter (NOM) were studied. The results showed that Kaolinite had no effect on the survival of phage MS2 except that apparent survival of MS2 increased 1 logarithm in higher hardness water. Microcystis aeruginosa addition reduced 1 logarithm of MS2 survival. However, when the pH value was greater than 4.0 or the concentration of Microcystis aeruginosa was less than 1.0×106cells·L-1, Microcystis aeruginosa addition had no influence on the survival of MS2. In higher hardness water, Microcystis aeruginosa protected MS2 viruses and then increased the survival of MS2. In drinking water, resource containing higher concentration of particles, the survival ability of virus would be enhanced with the increase of the hardness and then elevated the risks of drinking water safety. |
|
参考文献(共27条): | [1] Albert M J, Faruque A S, Faruque S M, et al. Case-control study of enteropathogens associated with childhood diarrhea in Dhaka, Bangladesh[J]. Journal of Clinical Microbiology, 1999, 37 (11): 3458-3464 | [2] Anders R, Chrysikopoulos C. Virus fate and transport during artificial recharge with recycled water[J]. Water Resources Research, 2005, 41 (10): W10415, doi: 10. 1029/2004WR003419. | [3] Hunt R J, Borchardt M A, Richards K D, et al. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses[J]. Environmental Science & Technology, 2010, 44 (20): 7956-7963. | [4] Chrysikopoulos C V, Sim Y. One-dimensional virus transport in homogeneous porous media with time-dependent distribution coefficient[J]. Journal of Hydrology, 1996, 185 (1): 199-219. | [5] Yates M V, Gerba C P, Kelley L M. Virus persistence in groundwater[J]. Applied and Environmental Microbiology, 1985, 49 (4): 778-781. | [6] Templeton M R, Andrews R C, Hofmann R. Particle-associated viruses in water: Impacts on disinfection processes[J]. Critical Reviews in Environmental Science and Technology, 2008, 38 (3): 137-164. | [7] Chrysikopoulos C V, Aravantinou A F. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures[J]. Journal of Hazardous Materials, 2012, 233: 148-157. | [8] Kahler A M, Cromeans T L, Humphrey C D, et al. Chlorine disinfection of aggregated adenovirus 2 in source water[J]. Proceedings of the Water Environment Federation, 2011, 2011 (3): 180-188. | [9] 陈昭斌. 噬菌体作用指示病毒用于消毒效果评价的研究[D]. 成都: 四川大学, 2006. | [10] Rao V C, Seidel K M, Goyal S M, et al. Isolation of enteroviruses from water, suspended solids, and sediments from Galveston Bay: survival of poliovirus and rotavirus adsorbed to sediments[J]. Applied and Environmental Microbiology, 1984, 48 (2): 404-409. | [11] Lipson S M, Stotzky G. Infectivity of reovirus adsorbed to homoionic and mixed-cation clays[J]. Water Research, 1985, 19 (2): 227-234. | [12] 张一卉, 赵以军, 程凯. 富营养化水体中微囊藻、 菌、 病毒数量关系初步研究[J]. 环境科学与技术, 2010, 33 (4): 20-23. | [13] 郑耀通. 闽江流域福州区段水体环境病毒污染、 存活规律与灭活处理[D]. 福建: 福建农林大学, 2002. | [14] Yuan B L, Pham M, Nguyen T H. Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell[J]. Environmental Science & Technology, 2008, 42 (20): 7628-7633. | [15] 王秋英, 赵炳梓, 张佳宝, 等. 噬菌体MS2和φX174的双层琼脂平板和液体培养基扩增方法的建立[J]. 土壤, 2007, 39 (2): 297-300. | [16] Patterson C P, Myers J. Photosynthetic production of hydrogen peroxide by Anacystis nidulans[J]. Plant Physiology, 1973, 51 (1): 104-109. | [17] Governal R A, Gerba C P. Persistence of MS-2 and PRD-1 bacteriophages in an ultrapure water system[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18 (5): 297-301. | [18] Jensen S I, Steunou A S, Bhaya D, et al. In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS[J]. International Society for Microbial Ecology, 2011, 5 (2): 317-328. | [19] Rosado-Lausell S L, Wang H T, Gutiérrez L, et al. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation[J]. Water Research, 2013, 47 (14): 4869-4879. | [20] Knight A, Li D, Uyttendaele M, et al. A critical review of methods for detecting human noroviruses and predicting their infectivity[J]. Critical Reviews in Microbiology, 2013, 39 (3): 295-309. | 更多... |
|
|
|
|
|