首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
1980~2010年浙江某典型河流硝态氮通量对净人类活动氮输入的动态响应
摘要点击 2123  全文点击 1438  投稿时间:2013-12-26  修订日期:2014-02-13
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  硝态氮  净人类活动氮输入  滞留氮库  动态响应  河流
英文关键词  nitrate  net anthropogenic nitrogen input (NANI)  retained nitrogen pools  dynamic response  river
作者单位E-mail
张柏发 浙江大学环境与资源学院, 杭州 310058 zhangbaifa188@zju.edu.cn 
陈丁江 浙江大学环境与资源学院, 杭州 310058
浙江大学污染环境修复与生态健康教育部重点实验室, 杭州 310058 
chendj@zju.edu.cn 
中文摘要
      以浙江某典型流域为研究对象,基于1980~2010年的水质水量和氮源数据及LOADEST模型,估算了逐年河流NO3--N通量和净人类活动氮输入(NANI),分析了河流NO3--N通量和NANI的年际演化特征及其动态响应关系,探讨了每年NANI、 滞留氮库、 自然背景源对河流NO3--N通量的贡献. 结果表明,1980~2010年,河流NO3--N通量和NANI总体上都呈现出先增后减的抛物线型变化趋势,均在1998年左右分别达到峰值5.74kg·(hm2·a)-1和77.5kg·(hm2·a)-1;过去31 a,河流NO3--N通量和NANI分别净增加了~42%和~77%. 化肥氮和大气氮沉降是NANI的主要来源,分别占了NANI的~48%和~40%. 河流NO3--N通量的年际变化不仅与NAIN(R2=0.27**)和化肥氮输入量(R2=0.32**)显著相关,而且与河流年均流量(R2=0.79**)或降雨量(R2=0.63**)具有更强的相关性,意味着河流NO3--N的来源除了当年的NAIN,还受滞留氮库的影响. 所建立的以NANI和流量为自变量的回归模型能很好地模拟河流NO3--N通量变化(R2=0.94**). 该模型预测结果显示,在NANI和流量分别降低30%的情况下,河流年均NO3--N通量将分别减少~21%和~30%;每年的NANI、 滞留氮库、 自然背景源对河流当年NO3--N通量的贡献率分别为~53%、~24%、~23%. 河流NO3--N通量长期的年际变化是NANI和水文要素共同作用的结果;但是,由于滞留氮库的影响,与源控制方式相比,增加"汇"景观应该能更加快速地削减河流NO3--N通量.
英文摘要
      Based on long-term records of river water quality and discharge and nitrogen sources as well as the LOADEST model, annual riverine NO3--N flux and net anthropogenic nitrogen input (NANI) were both estimated for a typical river catchment (2474 km2) in Zhejiang Province over the 1980-2010 period. Historical trends in both riverine NO3--N flux and NANI and their dynamic relationships were then fully addressed. Finally, the contributions of annual NANI, retained nitrogen pools, and natural background sources to riverine NO3--N flux were indentified. Results indicated that both riverine NO3--N flux and NANI showed parabolic changing trends with peak value of 5.74 kg·(hm2·a)-1 for flux and 77.5 kg·(hm2·a)-1 for NANI both occurring around 1998. In 1980-2010, net increase of riverine NO3--N flux and NANI was ~42% and ~77%, respectively. Chemical nitrogen fertilizer application and atmospheric nitrogen deposition, which accounted for ~48% and ~40% of NANI, respectively, were the major sources of NANI. Although interannual change of riverine NO3--N flux was significantly related to NANI (R2=0.27**) as well as the chemical nitrogen fertilizer application amount (R2=0.32** ), it showed higher dependence on the river water discharge (R2=0.79**) or precipitation (R2=0.63**), implying that annual riverine NO3--N was not only originated from current year's NANI, but also derived from retained N pools that were ultimately derived from NANI in previous years. A regression model developed by incorporating both NANI and water discharge could account for 94% of the variability of annual NO3--N flux. This model predicted that NO3--N flux could have been reduced by ~21% and ~30% if the annual NANI and water discharge had been cut by 30%, respectively. Annual NANI, retained nitrogen pools, and natural background sources contributed to~53%,~24%, and ~23% of the riverine NO3--N flux, respectively, suggesting that~77% of flux was derived from anthropogenic nitrogen sources. Although observed long-term interannual change of riverine NO3--N flux was dependent on the combined influences of NANI and hydroclimate, a more immediate reduction of riverine NO3--N flux may result from interception strategies than from cutting nitrogen source inputs due to the contribution of retained nitrogen pools.

您是第53091642位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2