2. 农业农村部环境保护科研监测所, 农业农村部产地环境污染防控重点实验室, 天津市农业环境与农产品安全重点实验室, 天津 300191;
3. 华南农业大学资源环境学院, 广州 510642
2. Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
3. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
抗生素是由微生物、高等动物和植物在其生命活动过程中所产生或通过其它途径获取的, 具有抗病原体或其它活性的次级代谢产物, 并能在低微浓度下干扰其它生活细胞发育功能的有机物质[1, 2]. 1928年9月英国细菌学家亚历山大·弗莱明首次发现了青霉素, 这标志着抗生素在人类世界的正式诞生.20世纪50年代初, 在美国畜禽养殖业为提高饲料效率、预防疾病和促进畜禽生长, 首次在饲料中人工添加抗生素等添加剂[3, 4], 从此开启了抗生素在畜禽领域的应用.
近年来, 人类对肉蛋奶等畜产品日益增长的需求促进了我国畜禽养殖业的飞速发展, 导致抗生素在畜禽养殖业的投入迅猛增加甚至滥用[5].Zhang等[6]对中国抗生素投入量的调查研究发现, 2013年中国抗生素的总使用量达近92 700 t, 兽用消耗占抗生素总使用量的52%.抗生素进入动物体内很难被吸收, 最后通过粪便和尿液的排泄率达28%~88%[7], 这造成了抗生素在动物粪便中较高的残留量, 以四环素类抗生素为例, 其在猪粪固相部分中的残留含量高达0.14~183.45 mg·kg-1[7~9].
畜禽粪尿等动物废弃物可作为肥料施入土壤补充土壤中有机物质, 供给作物所需的必需营养元素, 这是防治土壤退化、恢复土壤生态系统的重要方式[10].据估计, 我国每年畜禽粪肥的生产量超过了30亿t[11], 但是随着动物废弃物在农业土壤的大量使用, 畜禽粪肥中的抗生素也随之侵入土壤[12].对我国抗生素向环境中排放量的调查表明, 近84%的抗生素排放量(54 000 t)来自畜禽养殖场[6].抗生素入侵土壤后不仅会引发细菌耐药性, 而且抗生素和耐药菌会通过地表径流和随水下渗等方式迁移至地表水、地下水以及其它环境介质, 甚至通过农作物对人类健康造成潜在的威胁[13, 14].有研究表明, 不仅在儿童和孕妇群体中检测到抗生素的存在[15, 16], 而且93%的老年人也受到抗生素的危害[17], 甚至12%的新生儿存在对抗生素的耐药性[18].
1 土壤中抗生素的污染特征 1.1 土壤中抗生素的空间分布特征作为抗生素进入农田土壤的主要源头, 畜禽养殖场附近的农田土壤所遭受抗生素的污染达到了很高的程度[13], 例如在上海某养殖场附近农田土壤中的四环素类、磺胺类抗生素和氯霉素的含量分别高达5~25、6~33和3~18 mg·kg-1[19].但也有研究表明, 养殖场对周边土壤中抗生素分布的影响不大, 并未引起较高的生态风险, 这可能与养殖场的运作模式以及所在地区的气候特征有关[20, 21].较大田土壤而言, 蔬菜地因其较高的土地利用强度和畜禽粪便投入等因素导致了较严重的抗生素污染(图 1), 而农田土壤中的抗生素残余含量总体显著高于园地和林地等非农田土壤[22~24].尽管抗生素在农田土壤的残留量主要取决于畜禽粪肥投入、污水灌溉等农作措施, 但也有研究表明在粪肥投入量相等的情况下, 水稻田因具有较高的微生物量, 其土壤中抗生素残余量明显高于花生地[25].此外, 农作物作为人类生存的重要物质基础也在不同程度上受到了抗生素的污染.研究发现, 玉米可食用部分富集了相对较高的抗生素, 蕹菜次之, 其余3种作物由高到低顺序依次为水稻、白菜和萝卜, 且四环素类和喹诺酮类是主要的抗生素类型[26, 27].
![]() |
整理自文献[20, 23, 24, 28~41] 图 1 不同土地利用方式下抗生素含量的变化 Fig. 1 Changes in antibiotic content under different land use patterns |
四环素类、磺胺类、喹诺酮类和大环内酯类抗生素是畜禽养殖场中最常使用的4大类抗生素, 通过对近15年的相关调查进行总结发现, 我国表层土壤(0~20 cm)中抗生素的平均检出率高达58%(图 2), 检出率较高的地区主要包括山东(76%)、福建(76%)、广东(75%)、天津(71%)和安徽(71%)[20, 23, 24, 28~41].四环素类抗生素在表层土壤中被检出的频率最高(45%~99%, 平均76%), 喹诺酮类次之(16%~99%, 平均73%), 而磺胺类和大环内酯类的检出率相对较低.同时, 辽宁、宁夏、福建和广东等地区的表层土壤中抗生素的含量明显高于其他省, 达15~116 μg·kg-1, 而新疆地区最低, 仅为0.044 μg·kg-1(图 3).四大类抗生素在表层土壤中的含量由高到低依次为四环素类、喹诺酮类、磺胺类和大环内酯类.Pan等[42]选取四环素、磺胺甲嘧啶、诺氟沙星和红霉素作为典型抗生素对其环境行为进行研究, 发现抗生素在土壤中的吸附能力从大到小排序为:四环素>诺氟沙星>红霉素>磺胺甲嘧啶, 而抗生素吸附能力的强弱直接影响其在土壤中的空间分布.
![]() |
数据整理自文献[20, 23, 24, 28~41]; 基于自然资源部标准地图服务网站审图号GS(2020)4615号标准地图制作, 底图无修改, 香港、澳门和中国台湾地区资料暂缺, 下同 图 2 我国表层土壤(0~20 cm)中抗生素的检出率 Fig. 2 Detection rate of antibiotic in topsoil (0-20 cm) of China |
![]() |
整理自文献[20, 23, 24, 28~41] 图 3 我国表层土壤中抗生素的含量变化 Fig. 3 Changes in antibiotic content in topsoil of China |
基于前人研究结果可知, 四环素类和喹诺酮类抗生素主要分布于表层土壤, 并随土层深度加深呈下降趋势, 而磺胺类抗生素呈相反趋势(图 4)[35, 43].按照抗生素在土壤中的迁移强弱将其大致分为两类:第一类是在土壤中迁移能力强的抗生素, 包括磺胺类和大环内酯类抗生素[44].有调查研究均表明, 磺胺类抗生素因其强烈的迁移能力很容易进入水生环境(4~291 ng·L-1), 其在水环境中的残余含量较其它类型抗生素高出6~25倍, 对水生生态系统造成极高的潜在风险[45~49].Zhao等[22]调查研究表明, 大环内酯类抗生素因其在土壤中较弱的吸附能力, 其残余含量随着土层的增加而明显增加.这也是磺胺类和大环内酯类抗生素在作物中积累较少的主要原因之一.第二类是在土壤中迁移能力弱的抗生素, 如四环素类和喹诺酮类抗生素[22, 50], 因其特殊的结构致使其强烈的吸附于土壤胶体[51], 这使得这两类抗生素在表层土中会残留很长时间.此外, 四环素类和喹诺酮类抗生素易被微塑料通过氢键等方式吸附, 从而在土壤中发生共迁移, 最终可能会加剧其在环境中的生态风险[52, 53].
![]() |
图 4 不同土层中抗生素含量的变化 Fig. 4 Changes in antibiotic content in different soil layers |
除抗生素自身的特性外, 抗生素在土壤中迁移转化明显受到土壤理化性质的制约, 这也是影响土壤环境中抗生素分布特征的重要因素.土壤pH、阳离子交换量、有机质、铁氧化物和层状硅酸盐黏土矿物均强烈影响着抗生素在土壤的吸附能力[54~57].抗生素在土壤中主要通过范德华力、色散力及氢键等分子间作用力(物理吸附)和络合或螯合作用(化学吸附)与土壤胶体进行吸附.Bao等[58]研究发现, 红壤中富含的高铁铝氧化物是造成四环素在红壤中强烈吸附的主要原因.然而去除红壤中的铁铝氧化物并不一定会降低四环素的吸附能力, 究其原因是由于铁铝氧化物通常在有机质表面形成包膜, 一旦铁铝氧化物被去除, 有机质反而会被暴露于土壤中吸附四环素[59].密度泛函是揭示抗生素吸附机制的重要工具[60], Zhao等[61]基于密度泛函理论研究了22种磺胺类抗生素在介孔碳上的吸附, 发现磺胺类抗生素吸附的主要驱动力为π-π相互作用、疏水效应和氢键.
1.2 土壤中抗生素的时间分布特征相比于抗生素在土壤中的空间分布, 目前对我国土壤中抗生素的时间分布特征的研究相对较少, 且主要集中于季节变化规律[62].水分和温度是决定抗生素随时间变化的重要因素, 一方面适宜的水热条件有利于加快土壤微生物对抗生素的降解, 另一方面低温可增强土壤对抗生素的吸附[63].此外, 强降雨也会造成抗生素在土壤中的淋溶与迁移[64].有研究指出在中国东部长三角城市周边地区, 由于冬季低温低湿条件降低了抗生素的降解和迁移, 从而导致冬季土壤中抗生素的含量高于夏季[22].同时, 秋冬季较为频繁的畜禽粪肥施用也会造成冬季土壤中抗生素的含量高于夏季, 尤其是喹诺酮类抗生素[65].Pan等[28]调查了抗生素在不同种植年限大棚土壤中的分布规律, 发现抗生素在新棚(1~6 a)土壤中的残留量高于老棚(7~30 a). Zhang等[66]研究也表明, 棚龄在6 a以上的土壤中抗生素含量远高于5 a以内棚龄的土壤.究其原因, 一方面可能是长期的粪肥投入导致老棚土壤已被驯化较为丰富的抗生素高效降解菌, 另一方面这也可能与粪肥的投入量有关.通过总结先前文献发现, 尽管土壤中抗生素含量随时间的推移呈现出一定的波动, 但结合拟合分析结果发现抗生素含量整体随时间呈下降趋势(图 5), 这不仅在侧面暗示了日趋完善的国家相关政策法规对抗生素使用的规范性, 也在一定程度上反映了当前修复技术对抗生素污染土壤的有效治理.
![]() |
整理自文献[20, 23, 24, 28~41] 图 5 土壤中抗生素随时间的变化及拟合分析 Fig. 5 Changes in antibiotics in soil with time and fitting analysis |
微生物耐药性包括固有耐药性和获得耐药性, 除部分微生物具有天然耐药性之外, 其余主要通过自身基因突变和抗性基因水平转移获得[67, 68].抗生素抗性基因(ARGs)的水平转移一方面会通过移动遗传元件(MGEs, 包括质粒、整合子和转座子等)进行, 另一方面噬菌体(细菌病毒)也在此转移过程中起着不可忽视的作用[69~71].Chen等[72]研究发现, 有机肥的长期施用不仅造成了携带ARGs的土壤噬菌体种群的显著改变, 而且加强了噬菌体与细菌的关联度, 从而扩大了ARGs的宿主范围, 最终增加了ARGs在土壤环境中的传播风险.此外, 即使耐药菌株已经死亡, 其携带ARGs的裸露DNA也有可能会吸附在土壤颗粒, 并在适当条件下转移至其它微生物体内[73].
近年来, 抗生素的滥用进一步加剧了ARGs的扩增与传播, 全球每年因细菌耐药性而死亡的人数高达70万, 因此ARGs已经被世界卫生组织列为危害全球健康的三大威胁之一, 对人类感染类疾病的预防与治疗造成了严峻的考验[74~76].Fang等[77]调查了ARGs及人类致病菌在鸡粪肥和设施菜地土壤中的分布情况, 发现四环素抗性基因是粪肥中抗性基因的主要类型, 而在设施菜地土壤中多重耐药基因占主要成分, 同时抗生素、ARGs和人类致病菌展现出显著的正相关关系.黄福义等[78]对种植不同作物农田土壤ARGs的污染特征进行了研究, 发现ARGs在土壤中的丰度按由大到小顺序依次为:香蕉土>水稻土>花生土>甘蔗土>柑橘土, 同时在种植香蕉和水稻土壤中检测出丰度较高的移动遗传原件基因, 这进一步增加了ARGs的传播风险.Zeng等[31]对我国蔬菜大棚和露天土壤中ARGs的分布特征进行了系统的调查, 结果表明, 广东和山东两地蔬菜大棚土壤中的ARGs含量明显高于其他地区, 其丰度高达0.11~0.12(以16S rRNA计)[图 6(a)], 而露天土壤中ARGs的丰度显著低于蔬菜大棚, 且云南和湖南等地存在着较高的污染风险[图 6(b)].tet、sul和qnr基因是农业土壤中分布最广泛的ARGs, 其中sul基因丰度明显高于tet基因和qnr基因.有研究也表明, ARGs广泛分布于我国的农田土壤中, 主要受到了施肥、灌溉、作物产量、地膜覆盖和农药等因素的影响, 其中畜禽粪肥是其主要的影响因素[79].在粪肥改良的土壤中, ARGs会通过弹尾虫(Folsomia candida)-捕食性螨(Hypoaspis aculeifer)食物链传播, 从而加剧其传播风险[80].
![]() |
改自文献[31] 图 6 我国土壤中ARGs丰度的变化 Fig. 6 Changes in ARGs abundance in soil of China |
然而, 在实际土壤中并非只存在抗生素一种污染物, 复合污染对ARGs的共胁迫现象十分普遍.重金属作为抗生素的同源污染物(同为饲料添加剂), 其含量与ARGs丰度呈正相关关系[13, 19, 68].在我国, 尽管近年来动物饲料中已被禁止添加抗生素, 但是在用于治疗动物疾病的抗生素和重金属的协同选择作用下也会造成ARGs的扩增[81].微塑料是指直径小于5 mm的塑料颗粒, 作为一种新型污染物其粒径小、比表面积大、分布广且在环境中残留时间长, 成为了其它污染物的重要载体, 引起了国际社会的广泛关注[82].对我国19个省的调查结果显示, 土壤样品中尺寸较大的塑料含量在0.1~324.5 kg·hm-2之间, 可能有数千亿基于地膜的微塑料颗粒被排放到土壤中[83].尽管目前缺乏对全国尺度的微塑料污染土壤调查数据, 但根据青藏高原、云南、渤海和黄海沿岸等局部区域土壤的微塑料污染分布特征, 可以预测我国土壤环境中的微塑料污染状况不容乐观[84].有研究表明, 微塑料通过改变土壤性质提高了土壤中铜和四环素的生物有效含量, 增加了对微生物的选择压力, 导致了耐药菌在微塑料表面及周围的富集, 最终加剧了ARGs的扩增与传播风险[85].微塑料粒径越大和风化程度越强, 越会促进其对周围环境中抗生素和重金属的吸附, 从而增加微塑料表面ARGs的丰度和数量[86].此外, 残留在土壤中的杀虫剂也可能会通过共选择机制加剧ARGs的污染[87].
3 抗生素污染土壤生物修复技术农业农村部农业生态与资源保护总站于2019年8月发布的《受污染耕地治理与修复导则(NY/T 3499-2019)》中指出污染耕地的修复技术应具有环境友好性, 防止修复过程中对周边环境产生二次污染.因此, 生物修复作为一种绿色、环境友好型的修复技术在土壤污染治理过程中起着关键的作用.生物修复技术主要包括植物修复、动物修复和微生物修复(图 7), 本文主要从这三大方面对目前的国内外最新动态进行总结.
![]() |
图 7 土壤生物修复技术原理 Fig. 7 Principles of soil bioremediation technology |
植物修复技术以其投入成本低、环境干扰小且修复效果佳等特点广泛应用于环境中各种污染物的修复[88], 它通过利用植物根系对污染物的积累、固定、挥发、降解和矿化, 从而达到去除环境介质中污染物的目的[89, 90].植物积累是植物根系直接将污染物从环境转移至地上部组织中的过程[91], 主要通过筛选超积累植物如蜈蚣草(Pteris vittata)、东南景天(Sedum alfredii Hance)和伴矿景天(Sedum plumbizincicola)等, 待污染物转移至植物之后将其收获进行集中处理.相比重金属的植物提取, 有机物的直接吸收取决于目标污染物的理化性质如辛醇-水分配系数[92].植物固定是利用某些植物对污染物的机械固定作用(如根际的吸附与沉淀), 以阻止污染物的迁移, 减少其向生态系统和食物链的转移[93].植物降解是指在植物酶的驱动下, 污染物在根际或者植物组织中的完全或部分降解, 其降解机制主要是植物酶将目标污染物完全矿化为无机化合物如CO2和水, 或转化为稳定的化合物贮藏在植物组织中[90].植物代谢活动及其相关微生物将目标污染物转化为挥发性化合物并释放到大气的过程称为植物挥发, 该过程还伴随着对污染物的稀释和分散, 这有助于植物及微生物对污染物的降解[94].
运用黑麦草(Lolium perenne)和伴矿景天对土壤中抗生素(初始含量分别为15~903 μg·kg-1和0.6~12.7 μg·kg-1)的去除率分别达3.4%~28.8%和36%~76%[95, 96].相比于单作多花黑麦草(Lolium multiflorum)和印度芥菜(Brassica juncea), 轮作后对抗生素的去除率增加了46%~54%, 且ARGs丰度被进一步降低[97].虽然植物修复有着得天独厚的优势, 但其缺点也不容忽视, 比如许多植物对污染物敏感, 导致其生长缓慢, 难以产生足够的生物量进行植物修复[98], 再如受体内酶活性和数量的限制, 植物本身对有机污染物的降解能力较弱等[99], 因此植物-微生物联合修复技术成为了近年来的研究热点.
植物-微生物联合修复技术分为植物与专性菌株的联合修复和植物与菌根的联合修复, 前者是利用植物根系与污染土壤中专性降解菌的协同作用, 后者是利用菌根根际特殊的微生态区域所维持的较高的微生物种群密度和生理活性强化微生物对污染物的降解能力[100].豆科植物能在根部形成根瘤, 通过利用植物与根瘤菌的天然共生系统, 不仅增强植物固氮能力, 更重要的是增强植物和微生物对土壤中污染物的去除能力.植物根系通过分泌营养物质有助于增加根际与专性降解菌等功能微生物的群落数量, 改变种群结构和丰度并促进共代谢作用, 有利于对污染物的降解[101].湿地植物红树(Rhizophora apiculata)和卤蕨(Acrostichum aureum)具有较好的根系供氧能力和根系分泌物, 有利于微生物群落的生长, 从而有效刺激微生物去除喹诺酮类抗生素(初始含量为10 mg·kg-1时, 半衰期为10 d)[102].利用植物紫茉莉(Mirabilis jalapa)和孔雀草(Tagetes patula)与土霉素降解菌Phyllobacterium myrsinacearum和Rhodotorula mucilaginosa修复土霉素污染土壤, 对高(30 mg·kg-1)、低含量(5 mg·kg-1)土霉素的去除率分别达17%~59%和31%~71%, 且孔雀草的总体去除效果优于紫茉莉[103].
3.2 动物修复土壤动物是土壤生境中不可或缺的组成部分, 主要包括蚯蚓、蚂蚁、鼹鼠、变形虫、线虫、蜘蛛和千足虫等, 而蚯蚓是土壤动物中重要的物种, 也是目前为止土壤动物中研究最多的一类, 占土壤生物量的60%~80%[104].蚯蚓按生态类型可划分为表层种、深层种和内层种这3种, 常见的蚯蚓有赤子爱胜蚓(Eisenia fetida)、白颈环毛蚓(Pheretima californica)、威廉环毛蚓(Metaphire guillelmi)和壮伟环毛蚓(Amynthas robustus)等[105].由于蚯蚓的挖掘、消化和排泄活动具有很强的改造土壤结构、改善土壤理化性质、刺激微生物活动和促进反应的能力, 这会直接和间接地促进有机污染物的生物降解[106].
目前为止, 该技术已经成功地实现对土壤中重金属[107, 108]、多环芳烃[109]、农药[110~112]、多氯联苯[113, 114]和抗生素[115~119]等多种污染物的治理.例如, Yang等[116]发现蚯蚓在显著提高土壤中金霉素及其代谢产物的去除的同时也降低了tetR、tetD、tetPB、tetG、tetA、sul1、TnpA、ttgB和intI1等基因的丰度, 在培养第28 d, ARGs的总丰度降低了35%~44%.由于“蚓触圈”自身特殊的环境条件, 导致四环素在蚯蚓肠道、粪便和非“蚓触圈”土壤中的降解菌存在差异, Ralstonia sp.和Sphingomonas sp.是土壤中潜在的降解菌, 蚯蚓肠道(Pseudomonas sp.和Arthrobacter sp.)和蚓粪(Comamonas sp.、Acinetobacter sp.和Stenotrophomonas sp.)中的降解菌将4-差向四环素脱水成4-差向脱水四环素[117].利用蚯蚓去除土壤中有机污染物的机制主要包括以下两方面:第一, 蚯蚓通过表皮接触或进食吸收有机污染物, 肠道独特的厌氧状态为厌氧和/或兼性厌氧菌提供了有利的微环境, 使需氧和厌氧细菌的数量为土壤中的12~20倍和10~4 000倍[120], 污染物一方面会在肠道和消化系统中加速降解和代谢[121], 另一方面可能在蚯蚓体内富集[122].第二, 蚯蚓在土壤中的移动和掘穴活动增强了土壤的通气性, 增加了微生物与污染物的接触几率[123], 并通过蚯蚓的粘液分泌物以及对有机物质的分解以提供充足的碳源, 刺激降解菌在土壤中快速生长, 强化微生物对有机污染物的降解能力[124].值得一提的是, 尽管蚯蚓的存在可以有效修复抗生素污染土壤, 但高含量抗生素也会能诱导蚯蚓DNA链断裂和遗传毒性, 并造成ARGs在蚯蚓肠道的传播, 从而对蚯蚓生长造成威胁[125, 126].
3.3 微生物修复土壤微生物修复是利用土著微生物或人工驯化功能菌基于其自身的代谢作用将目标污染物作为能源物质或者以共代谢的方式去除, 通过分泌胞外降解酶或者将污染物吸收至细胞内由胞内酶降解, 从而实现土壤污染治理的目的[127, 128].抗生素作为一种广谱性的杀菌物质对细菌和放线菌活性具有抑制作用, 会影响土壤呼吸、氮/铁循环等过程, 但对真菌活性影响不大, 甚至可能增加真菌生物量[129, 130].尽管抗生素的存在对古菌总量影响微弱, 但却会改变其群落结构, 尤其是产甲烷古菌, 对抗生素尤为敏感[131, 132].微型藻类、纤毛虫等原生生物也会受到抗生素的抑制, 例如土霉素的存在会使游仆虫(Euplotes crassus)基因组内rDNA序列多样性及其碱基组成发生改变, 从而显著抑制游仆虫的个体生存能力、细胞分裂效率和种群自然增长率, 这也表明原生生物可通过基因组高度的可塑性以适应抗生素污染胁迫[133].抗生素对微生物的选择性压力会引发特异性微生物群落的形成, 诱导耐药菌株的产生, 同时也能促进对抗生素的生物降解[134].虽然抗生素降解菌主要以耐药细菌为主(它们通过取代基氧化与裂解、羟基化/去羟基化等过程降解抗生素), 但某些真菌(如白腐真菌、镰刀菌、聚多曲霉、微紫青霉等)也被发现具有降解四环素类、磺胺类和喹诺酮类抗生素的能力[135, 136].此外, 微生物还能协同降解抗生素, 例如类节杆菌(Paenarthrobacter sp.)可将磺胺甲
微生物修复主要分为原位修复和异位修复, 原位修复主要是通过向土壤中微生物提供生长所需能源, 促进土壤中微生物对污染物的降解, 同时也可向环境中添加高效降解菌剂进行污染物原位修复.而异位修复是将污染土壤转移至特定环境中, 利用高效降解菌对其进行集中修复.微生物原位修复法虽然成本低, 但是易受场地环境的影响, 修复难度相对较大.而异位修复法的修复效果较原位修复好, 但是修复成本高, 且不适合大面积污染场地的修复.无论原位修复还是异位修复都有各自的适用范围, 其难易程度主要取决于目标污染物的化学结构和土壤中微生物的数量和活性, 因此高效降解菌的筛选一直是研究的热点.史艳财[138]筛选出8种四环素类抗生素的降解菌, 其中2株四环素降解菌(Citrobacter werkmanii、Providencia rettgeri strain)、4株土霉素降解菌(Citrobacter werkmanii、Bacillus megaterium、Arthrobacter sp.、Bacillus altitudinis)、1株金霉素降解菌(Pseudomonas putida)以及1株四环素和金霉素的降解菌(Comamonas testosterone), 均为革兰氏阴性菌.解开治等[139]研发了高效降解四环素类抗生素的菌剂, 其对土壤中四环素、土霉素、多西环素的去除效率均高于95%.红霉素酯酶源于大肠杆菌质粒或绿脓杆菌假单胞菌, 具有降解红霉素的潜力, 将红霉素酯酶(ereA)表达于大肠杆菌表面, 构建出的基因工程菌E. coli ereA可有效提高对红霉素的降解效率[140].然而, 由于土壤环境条件较差、菌剂缺乏营养来源, 以及土著微生物对入侵的高效降解菌的“排斥效应”, 使得向污染土壤中施入菌剂的实际效果很难达到室内控制实验的预期效果[141], 而将降解菌株固定于载体可提高细胞渗透性、增加与污染物的接触面积、增强微生物稳定性, 最终有利于降解菌在污染土壤中的定殖与修复[142~144].微生物固定化载体需要具有低成本、环保、机械和化学稳定性高、固定化细胞有足够空间、防止不必要的蛋白质变性、增强底物与固定化细胞之间的相互作用等特点, 常用的载体包括天然类、合成聚合物凝胶和无机材料等[145].运用多孔蔗渣颗粒作为降解菌的固定化载体基质可以给菌株提供必要的有机物和营养物质, 提高其对土壤重金属离子的耐受性, 从而增强菌株对土壤环境的定殖和适应能力[143].生物炭具有高碳含量、高阳离子交换容量、高孔隙率、高稳定性和丰富的表面官能团等优点, 被广泛报道为潜在的固定化基质, 它通过吸附、包封、共价键和交联等固定方式不仅为微生物的生长繁殖提供了空间, 还可以提供少量的营养, 抵御外界环境因素对微生物生长的影响[146].将具有降解四环素能力的贝莱斯芽孢杆菌(Bacillus velezensis)固定化, 制备磁性固定化微生物复合材料, 可有效增强该菌的降解效果, 其降解率较仅添加该菌株的对照处理提高了20%[147].尽管对降解菌剂的研制与应用备受关注, 但如何进一步增强高效降解菌在污染土壤中的定殖能力和实际修复效果目前仍旧是一个巨大的挑战[148].此外, 尽管高效降解菌的添加有助于污染土壤的治理, 但此过程可能引发的生物入侵与生物安全问题同样需要高度警惕.
3.4 土壤微生物电化学修复随着有机污染物的氧化降解, 污染土壤中氧化剂(电子受体)逐渐消耗以致缺乏限制了微生物的修复效率, 而微生物电化学系统(MES)能够提供固体阳极作为永不枯竭的电子受体, 在将土壤中有机污染物降解的同时还能将此过程中的化学能直接转化为生物电能, 既解决了微生物修复效率提升的技术瓶颈, 又实现了污染治理与固废资源化利用的双功效, 且该过程无二次污染[149].MES是基于产电呼吸的一种电化学装置, 起初为双室构型, 由电极材料、阳极室、阴极室和隔膜组成[150].其工作原理如图 8(a)所示, 主要分为底物生物氧化、阳极还原、外电路电子传输、质子迁移和阴极反应共5个步骤[151].双室微生物燃料电池的缺点在于阴极需要曝气, 为此出现了单室微生物燃料电池[图 8(b)], 与双室的主要区别是阴极直接暴露于空气中, 这样氧气会直接自发地扩散至阴极的亲水层从而避免了曝气所需的能量消耗.
![]() |
图 8 微生物电化学系统构型 Fig. 8 Schematics of microbial electrochemical systems |
在MES中, 电子主要通过直接和间接传递两种方式进行转移, 直接传递包含纳米导线和膜蛋白两种途径, 间接传递主要利用电子中介体(如蒽醌类物质)进行[152, 153].产电微生物主要富集于MES阳极表面及附近, 典型的产电菌包括: Geobacter lovleyi、Geobacter sulfurreducens、Shewanella putrefaciens、Shewanella oneidensis和Thermincola carboxydophila等, 它们通过在阳极表面形成生物膜或者分泌氧化还原性电子传递介质完成向阳极的电子传输[154~156].然而, 在正常环境中产电微生物向阳极传递电子的过程会受到诸多因素的限制, 例如细胞外膜的c型细胞色素在向胞外传递电子的过程中会受到其辅助因子含量和固态电子受体极性等因素的影响[157].鉴于此, 国内外学者基于产电微生物与阳极间的作用机制, 通过合成生物学手段改造细胞、导电纳米材料修饰细胞、在阳极表面固定化细胞等方式, 对产电微生物向阳极的电子传递过程进行强化[158].Cao等[159]通过在外膜和跨膜区引入银纳米颗粒, 极大地提高了希瓦氏菌的产电效率, 其最大电流密度和功率密度分别达3.9 mA·cm-2和0.7 mW·cm-2, 库仑效率高达81%, 是截至当前产电效率最高的MES.
与生物阳极不同的是, 生物阴极的电活性微生物通常大部分是自养型亲电微生物, 且生物阴极的胞外电子传递机制目前尚不清楚[160].胞外电子传递过程是双向的, 生物阴极的电子传递通常为向内型传递过程, 即阴极作为固体电子供体, 电子穿过微生物的细胞膜进入细胞内部[161].参照生物阳极的胞外电子传递机制, 生物阴极的胞外电子传递机制可能分为两种: 直接电子传递和中介体电子传递机制[162].直接电子传递即通过微生物细胞膜蛋白或者纳米导线与阴极或者其它细胞直接接触进行电子传递, 而中介体电子传递则是利用内生或外生的氧化还原化合物在阴极与微生物之间穿梭从而进行电子传递.除Shewanella oneidensis MR-1、Geobacter sulfurreducens和Alcaligenes faecalis等具有双向胞外电子传递功能的微生物外, 大部分电活性微生物只拥有单向胞外电子传递的能力, 即它们只能作为电能的生产者或者消耗者而富集于电极附近[163].同时, 同一双向传递型电活性菌株在阳极和阴极部位的胞外电子传递机制也不尽相同, 例如G. sulfurreducens的PccP蛋白在向内型电子传递过程是必需的, 但在向外型电子传递过程中并不需要[164].
3.4.2 在抗生素污染土壤中的应用目前为止, MES已经广泛应用于水体、沉积物和土壤中多种有机、无机污染物的修复研究[165~169].关于抗生素污染修复最早的研究出现于2011年, Wen等[170]运用一个单室空气阴极MES去除废水中的头孢曲松钠, 研究发现头孢曲松钠(50 mg·L-1)能够在24 h内降解91%, 其降解率较对照提高了78%, 在葡萄糖存在的条件下添加头孢曲松钠后系统输出最大功率密度增加了近5倍.此后相关的研究逐渐受到国内外关注, 但主要集中于废水处理.研究使用的反应器构型多种多样, 按其操作原理主要分为以下三大类:第一类主要结合厌氧微生物降解和功能微生物的电化学刺激作为其关键降解机制, 即通过提供电子刺激微生物的代谢; 第二类的研究重点在于生物阴极, 其降解机制主要涉及直接的电化学还原和生物降解反应; 第三类主要运用阴极产生的自由基攻击并降解目标抗生素[171].
由于土壤自身的复杂性、异质性以及不同地域土壤类型的差异, 导致MES对抗生素污染土壤的修复难度高于水环境, 尤其是土壤巨大的内阻对电子传递效率的制约所造成的修复效率低下问题.通过向土壤中添加二氧化硅胶体[172]、砂粒[173]、导电碳纤维[174]和生物质炭[175]等均可有效提高土壤的电子传递和修复效率.例如, 添加生物质炭可迅速提高土壤MES的产电效率, 特别是添加木屑处理, 其累积电荷输出较对照处理高出36%, 这也为土壤碳封存提供了新思路[175].
Zhao等[176]采集了黑土、潮土、黄棕壤和红壤这4种类型土壤进行研究, 发现MES更适用于高电导率的土壤, 这可能是由于高电导率降低了土壤MES的内阻[177], 即高离子强度引起的高电导率更有利于MES的电子传递(图 9), 从而加快了MES中的氧化还原反应, 进而提高了对抗生素的降解效能.然而, 以四环素为代表的抗生素易被土壤吸附, 这很大程度地限制了它们在土壤MES中的降解速率[176].因此, 如何降低四环素在土壤中的吸附非常关键, 可以适当添加一些无害的物质与四环素竞争吸附位点.但需要注意的是一旦四环素被解吸出来很可能会增加它向其它环境介质的迁移风险, 因此考虑这条建议的前提是异位修复.磷是植物和微生物生长发育必需的营养元素, 在正常土壤pH条件下无机磷在土壤中主要以磷酸根离子或磷酸氢根离子存在.有研究发现, 磷酸根离子的存在会与草甘膦竞争吸附位点, 从而抑制草甘膦在土壤中的吸附[178].在土壤MES运行过程中加入磷可与四环素竞争吸附从而提高四环素在土壤中的生物可利用性(图 10), 最终有利于MES对四环素的降解(去除率较对照提高了25%)[51, 179].同时土壤MES具有快速降解抗生素的能力, 在实验第7 d, 四环素在闭路处理中的降解率已经达到42%~50%, 较相应的开路处理显著提高42%~67%(P < 0.05), 而在无电极处理中的降解效率仅为6%[179].不仅如此, 即使针对混合抗生素污染的土壤, 该系统依旧具有很好的修复效果[180].此外, 相比于研究较为成熟的阳极氧化降解, MES阴极近年来也受到了关注, 且对抗生素的去除效率与阳极相近[179, 181], 这可能是阴极的供电子系统促进了功能菌的还原降解[182].
![]() |
图 9 电子在高、低电导率土壤MES中的模拟传递过程 Fig. 9 Simulated electron transfer process in MES filled with high or low conductivity soils |
![]() |
图 10 土壤MES中添加磷对四环素降解的影响 Fig. 10 Effect of phosphorus addition in soil MES on tetracycline degradation |
微生物是MES运行过程的反应主体, 深入研究MES中参与抗生素降解的功能菌群是阐明其生物降解机制和ARGs扩增与传播机制的重要基础.在MES运行过程中, 功能微生物之间的协作、竞争和拮抗等作用构建了一个密切的代谢关系网络.例如, 在MES的产电过程中, 发酵细菌Anaerolineaceae sp.可将小分子糖类分解为短链脂肪酸和H2, 电活性微生物Geobacter sp.则可以利用短链脂肪酸如乙酸盐或丙酸盐等作为电子供体完成其生长代谢过程[183, 184].对于抗生素的生物降解, 需要行使不同功能微生物之间的相互协作完成降解过程.通过Network关联分析发现土壤MES可以提供生物电流刺激系统中的微生物代谢活性, 强化细菌、真菌和古菌之间的协作关系, 建立一个涉及产电、降解和氮转化在内的功能微生物代谢网络(图 11), 从而促进对抗生素的降解效率[181].土壤MES在降解抗生素的过程中, 由某些功能菌分泌的酶起着重要的作用[185].借助宏基因组技术在土壤MES阴极部位分辨出4个潜在的功能酶基因, 分别为电子传递黄素蛋白2, 3-氧化还原酶(EC 1.3.8.7)、富马酸还原酶(EC 1.3.5.4)、多酚氧化酶(EC 1.10.3.-)和醌氧化酶(EC 1.10.3.14)[179].进一步发现, Gemmatimonadetes bacterium SCN 70-22、Azohydromonas australica和Steroidobacter denitrificans很可能分泌EC1.3.8.7编码的电子转移黄素蛋白2, 3-氧化还原酶, 以提高电子从阴极到亲电菌的转移效率.Gemmatirosa kalamazoonesis可能分泌EC 1.10.3.14编码的醌氧化酶, 以加速土壤MES阴极的胞外电子传递过程, 从而提高了四环素的生物降解速率[179].此外, 由EC 1.10.3-编码的多酚氧化酶可能与四环素在MES中的降解有关.
![]() |
图 11 土壤MES对微生物种间关系的影响 Fig. 11 Effect of soil MES on interspecific relationship of microorganisms |
尽管Song等[186]研究发现MES在降解抗生素的过程中会加剧ARGs对生态环境的潜在威胁, 但多数研究均表明MES能够有效控制ARGs的扩增与传播[187~189].Yan等[171]结合交叉领域的相关研究基于以下两方面原因肯定了该系统在消减ARGs方面的应用前景:第一, 该系统是在厌氧生物技术的基础上构造的, 而先前研究证实了厌氧处理工艺可以有效去除ARGs.第二, 该系统较传统厌氧处理方法产生极低的剩余生物量, 这在一定程度上降低了ARGs扩增和传播的载体.通过构建土壤MES进一步明确了该系统对ARGs的消减机制:一方面, MES给予微生物电流刺激调控并重塑了土壤微生物的种间关系, 建立了一个不同于对照处理的微生物代谢网络, 降低了耐药菌的数量[181]; 另一方面, MES具有快速降解土壤中抗生素的能力, 从而减缓了抗生素对微生物的选择性压力, 进而降低了ARGs的扩增与传播风险[179].Chen等[190]通过综述前人研究提出在MES中加入某些添加剂, 包括有机质、亚硝酸盐、过氧化钙、铜、表面活性剂等, 可增强对ARGs的消减.例如, 将过氧化钙添加至MES中不仅可加速胞外电子转移过程从而提高对抗生素的降解效率, 而且过氧化钙会破坏DNA, 并减少一些酶和蛋白质, 最终促进对ARGs的消减[191].
4 展望(1) 存在于土壤中的抗生素和ARGs不仅会给土壤环境带来威胁, 也会通过迁移扩散等途径增加其对其他环境介质的污染风险.目前尚缺乏土壤中抗生素和ARGs在全国尺度上连续多年的追踪调查, 增加相关研究将为揭示抗生素污染特征和制定相关政策法规等提供更多的科学依据.尽管经过对现有文献数据的统计分析发现, 土壤中抗生素含量随时间推移呈现一定的下降趋势, 但依旧不能放松对抗生素使用的管控和污染修复技术的研发.
(2) 生物修复是基于自然环境本身存在的生物资源来实现污染治理, 针对抗生素污染土壤的生物修复技术目前还不成熟, 尚有一些不足之处需要完善:第一, 植物和动物可通过积累或富集等方式吸收土壤中的抗生素, 对于吸收在生物体内的抗生素如何处理需进一步完善.第二, 考虑到高含量抗生素的生物体自身的毒害, 对于养殖场附近污染土壤的修复目前适用性低.第三, 尽管高效降解菌在人工控制实验中对抗生素的降解效果较好, 但实际环境的复杂性限制了其原有的修复效率, 另外如何在保证生物安全的同时提高降解菌在污染土壤中去除效率值得深思.
(3) 虽然MES在废水处理领域已经初步实现从实验模拟到实际应用的跨越, 但在污染土壤修复方面距离实际应用仍存在一定的距离.尽管如此, 土壤MES依旧具有巨大的研究潜力, 未来主要从以下几方面着手:第一, MES的产电特性可为全球能源转型提供新思路, 然而其产电性能目前受到诸多因素的限制, 在我国实现“碳达峰、碳中和”目标的背景下, 急需研发新能源技术来改变由传统化石能源发电的现状, 因此提升MES的产电性能是当前亟待解决的问题之一.第二, 迄今为止, 多数相关研究主要通过统计学手段结合现有文献对降解功能菌与ARGs宿主菌进行推测, 然而这些降解菌是否真正起作用, 究竟是哪些功能基因起到关键作用, 如何通过调控关键功能基因进一步促进抗生素在MES中的降解有待深入研究.第三, 污染代谢产物在不同降解菌间的跨膜转运是耗能过程, 这将在一定程度上制约微生物对有机污染物的降解效能.重组不同菌体中的降解功能基因, 构建具有高效降解能力的基因工程菌, 采用微生物电化学技术对其降解效能作进一步强化, 将有助于定向增强污染物的生物降解效率.第四, 由于土壤MES需要淹水条件, 且土壤巨大的内阻降低了电子传递效率, 从而限制了对抗生素等污染物的修复效果, 因此土壤MES目前较难应用于原位土壤修复, 未来应努力打破淹水条件对土壤MES的限制, 着重探索提高土壤电子传递效率的方法, 如添加生物质炭, 或者在不影响土壤质量的前提下适当提高土壤电导率等.第五, MES对ARGs的去除机制尚无确切定论, 仍需进行深入研究.
5 结论(1) 我国关于土壤中抗生素污染状况调查的相关研究最初出现于2008年左右.从近15年的调查结果来看, 全国各地土壤均不同程度地受到了抗生素及其抗性基因的污染, 尤其是广东、福建和山东地区.
(2) 抗生素对蔬菜地的污染通常较大田等其它生产类型的土壤更为严重, 且四环素类和喹诺酮类抗生素主要残留于表层土壤, 而磺胺类和大环内酯类抗生素因其自身较强的迁移能力常见于深层土壤甚至水环境中.由于不同季节的气候条件存在差异, 导致土壤中抗生素的残余量在秋冬季高于夏季.另外, 在关注土壤中抗生素的同时, 重金属、微塑料及杀虫剂等对ARGs在土壤中扩增与传播的影响也不容忽视.
(3) 植物通过积累、固定、挥发、降解和矿化等方式或者联合微生物修复抗生素污染土壤.蚯蚓常被用于动物修复, 通过将抗生素在肠道内部降解、富集及强化“蚓触圈”土壤降解菌活性以实现其对污染土壤的修复.耐药细菌是抗生素的主要降解菌, 将降解菌株固定于载体有利于其在污染土壤中的定殖与修复.
(4) 土壤MES是一种绿色高效的修复技术, 该系统可以提供生物电流刺激土壤微生物的代谢活性、重构种间关系、调控功能酶的分泌, 不仅增强了微生物对抗生素的降解效率, 而且也有效控制了ARGs的扩增传播风险.
[1] | Chan W Y, Wai O W H, Li Y S. Critical shear stress for deposition of cohesive sediments in Mai Po[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(S3): 300-305. |
[2] |
李亚宁, 陈春, 李国东, 等. 磺胺甲恶唑对小麦叶片蛋白和叶绿素含量及SOD酶活性的影响[J]. 生态毒理学报, 2013, 8(4): 543-548. Li Y N, Chen C, Li G D, et al. Effects of sulfamethoxazole (SMZ) on the content of chlorophyll (CHL) and soluble protein (SP), and the superoxide dismutases (SOD) activity of wheat, Triticum aestivum[J]. Asian Journal of Ecotoxicology, 2013, 8(4): 543-548. |
[3] | Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010, 44(18): 6933-6939. |
[4] | Chen X J, Wu L H, Xie X Y. Assessing the linkages between knowledge and use of veterinary antibiotics by pig farmers in rural China[J]. International Journal of Environmental Research and Public Health, 2018, 15(6). DOI:10.3390/ijerph15061126 |
[5] |
李晓华. 规模化猪场粪污中典型抗生素归趋行为及抗性基因扩散特征研究[D]. 北京: 中国农业科学院, 2018. Li X H. Migration characteristics of the typical antibiotics and spread of antibiotic resistance genes in the environment of large-scale swine feedlots[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. |
[6] | Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. |
[7] | Gaballah M S, Guo J B, Sun H, et al. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook[J]. Bioresource Technology, 2021, 333. DOI:10.1016/j.biortech.2021.125069 |
[8] | Yin F B, Dong H M, Zhang W Q, et al. Additional function of pasteurisation pretreatment in combination with anaerobic digestion on antibiotic removal[J]. Bioresource Technology, 2020, 297. DOI:10.1016/j.biortech.2019.122414 |
[9] | Gros M, Marti E, Balcázar J L, et al. Fate of pharmaceuticals and antibiotic resistance genes in a full-scale on-farm livestock waste treatment plant[J]. Journal of Hazardous Materials, 2019, 378. DOI:10.1016/j.jhazmat.2019.05.109 |
[10] | He L Y, He L K, Gao F Z, et al. Dissipation of antibiotic resistance genes in manure-amended agricultural soil[J]. Science of the Total Environment, 2021, 787. DOI:10.1016/j.scitotenv.2021.147582 |
[11] | Xie W Y, Shen Q, Zhao F J. Antibiotics and antibiotic resistance from animal manures to soil: a review[J]. European Journal of Soil Science, 2018, 69(1): 181-195. DOI:10.1111/ejss.12494 |
[12] | Ishikawa N K, Touno E, Higashiyama Y, et al. Determination of tylosin excretion from sheep to assess tylosin spread to agricultural fields by manure application[J]. Science of the Total Environment, 2018, 633: 399-404. DOI:10.1016/j.scitotenv.2018.03.216 |
[13] | Qiao M, Ying G G, Singer A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172. DOI:10.1016/j.envint.2017.10.016 |
[14] |
朱冬, 陈青林, 丁晶, 等. 土壤生态系统中抗生素抗性基因与星球健康: 进展与展望[J]. 中国科学: 生命科学, 2019, 49(12): 1652-1663. Zhu D, Chen Q L, Ding J, et al. Antibiotic resistance genes in the soil ecosystem and planetary health: progress and prospect[J]. Scientia Sinica (Vitae), 2019, 49(12): 1652-1663. |
[15] | Zhou Y J, Zhu F, Zheng D Y, et al. Detection of antibiotics in the urine of children and pregnant women in Jiangsu, China[J]. Environmental Research, 2021, 196. DOI:10.1016/j.envres.2021.110945 |
[16] | Wang H X, Wang B, Zhao Q, et al. Antibiotic body burden of Chinese school children: a multisite biomonitoring-based study[J]. Environmental Science & Technology, 2015, 49(8): 5070-5079. |
[17] | Zhu Y T, Liu K Y, Zhang J J, et al. Antibiotic body burden of elderly Chinese population and health risk assessment: a human biomonitoring-based study[J]. Environmental Pollution, 2020, 256. DOI:10.1016/j.envpol.2019.113311 |
[18] | Tan J T, Wang Y W, Gong X H, et al. Antibiotic resistance in neonates in China 2012-2019: a multicenter study[J]. Journal of Microbiology, Immunology and Infection, 2022, 55(3): 454-462. DOI:10.1016/j.jmii.2021.05.004 |
[19] | Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235-236: 178-185. DOI:10.1016/j.jhazmat.2012.07.040 |
[20] | Zhi S L, Shen S Z, Zhou J, et al. Systematic analysis of occurrence, density and ecological risks of 45 veterinary antibiotics: focused on family livestock farms in Erhai Lake basin, Yunnan, China[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115539 |
[21] |
张俊华, 陈睿华, 刘吉利, 等. 宁夏养牛场粪污和周边土壤中抗生素及抗生素抗性基因分布特征[J]. 环境科学, 2021, 42(6): 2981-2991. Zhang J H, Chen R H, Liu J L, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in manure and surrounding soil of cattle farms in Ningxia[J]. Environmental Science, 2021, 42(6): 2981-2991. |
[22] | Zhao F K, Chen L D, Yang L, et al. Distribution, dynamics and determinants of antibiotics in soils in a peri-urban area of Yangtze River Delta, Eastern China[J]. Chemosphere, 2018, 211: 261-270. DOI:10.1016/j.chemosphere.2018.07.162 |
[23] |
张小红, 陶红, 王亚娟, 等. 银川市农田土壤中四环素类抗生素的污染特征及生态风险评估[J]. 环境科学, 2021, 42(10): 4933-4941. Zhang X H, Tao H, Wang Y J, et al. Pollution characteristics and risk assessment of tetracycline antibiotics in farmland soil in Yinchuan[J]. Environmental Science, 2021, 42(10): 4933-4941. |
[24] |
赵方凯, 陈利顶, 杨磊, 等. 长三角典型城郊不同土地利用土壤抗生素组成及分布特征[J]. 环境科学, 2017, 38(12): 5237-5246. Zhao F K, Chen L D, Yang L, et al. Composition and distribution of antibiotics in soils with different land use types in a typical peri-urban area of the Yangtze River Delta[J]. Environmental Science, 2017, 38(12): 5237-5246. |
[25] | Wang F, Xu M, Stedtfeld R D, et al. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome[J]. Environmental Science & Technology, 2018, 52(22): 13037-13046. |
[26] | Pan M, Wong C K C, Chu L M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, Southern China[J]. Journal of Agricultural and Food Chemistry, 2014, 62(46): 11062-11069. DOI:10.1021/jf503850v |
[27] | Zhao F K, Yang L, Chen L D, et al. Bioaccumulation of antibiotics in crops under long-term manure application: occurrence, biomass response and human exposure[J]. Chemosphere, 2019, 219: 882-895. DOI:10.1016/j.chemosphere.2018.12.076 |
[28] | Pan Z, Yang S D, Zhao L X, et al. Temporal and spatial variability of antibiotics in agricultural soils from Huang-Huai-Hai Plain, Northern China[J]. Chemosphere, 2021, 272. DOI:10.1016/j.chemosphere.2021.129803 |
[29] | Gu J Y, Chen C Y, Huang X Y, et al. Occurrence and risk assessment of tetracycline antibiotics in soils and vegetables from vegetable fields in Pearl River Delta, South China[J]. Science of the Total Environment, 2021, 776. DOI:10.1016/j.scitotenv.2021.145959 |
[30] |
尹春艳, 骆永明, 滕应, 等. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学, 2012, 33(8): 2810-2816. Yin C Y, Luo Y M, Teng Y, et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science, 2012, 33(8): 2810-2816. |
[31] | Zeng Q T, Sun J T, Zhu L Z. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China[J]. Chemosphere, 2019, 224: 900-909. DOI:10.1016/j.chemosphere.2019.02.167 |
[32] | Wei R C, He T, Zhang S X, et al. Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China[J]. Chemosphere, 2019, 215: 234-240. DOI:10.1016/j.chemosphere.2018.09.152 |
[33] | Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, Southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276. DOI:10.1021/jf1047578 |
[34] |
李彦文, 莫测辉, 赵娜, 等. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J]. 环境科学, 2009, 30(6): 1762-1766. Li Y W, Mo C H, Zhao N, et al. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 2009, 30(6): 1762-1766. DOI:10.3321/j.issn:0250-3301.2009.06.035 |
[35] | Huang X, Liu C X, Li K, et al. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China[J]. Environmental Science and Pollution Research, 2013, 20(12): 9066-9074. DOI:10.1007/s11356-013-1905-5 |
[36] |
潘霞, 陈励科, 卜元卿, 等. 畜禽有机肥对典型蔬果地土壤剖面重金属与抗生素分布的影响[J]. 生态与农村环境学报, 2012, 28(5): 518-525. Pan X, Chen L K, Bu Y Q, et al. Effects of livestock manure on distribution of heavy metals and antibiotics in soil profiles of typical vegetable fields and orchards[J]. Journal of Ecology and Rural Environment, 2012, 28(5): 518-525. |
[37] | Li C, Chen J Y, Wang J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. Science of the Total Environment, 2015, 521-522: 101-107. DOI:10.1016/j.scitotenv.2015.03.070 |
[38] | Gao L H, Shi Y L, Li W H, et al. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China[J]. Environmental Science and Pollution Research, 2015, 22(15): 11360-11371. DOI:10.1007/s11356-015-4230-3 |
[39] | An J, Chen H W, Wei S H, et al. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, Northeast China[J]. Environmental Earth Sciences, 2015, 74(6): 5077-5086. DOI:10.1007/s12665-015-4528-y |
[40] | Xiang L, Wu X L, Jiang Y N, et al. Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, South China[J]. Environmental Science and Pollution Research, 2016, 23(14): 13984-13995. DOI:10.1007/s11356-016-6493-8 |
[41] |
张兰河, 王佳佳, 哈雪姣, 等. 北京地区菜田土壤抗生素抗性基因的分布特征[J]. 环境科学, 2016, 37(11): 4395-4401. Zhang L H, Wang J J, Ha X J, et al. Distribution characteristics of antibiotic resistance genes in vegetable soils in Beijing[J]. Environmental Science, 2016, 37(11): 4395-4401. |
[42] | Pan M, Chu L M. Adsorption and degradation of five selected antibiotics in agricultural soil[J]. Science of the Total Environment, 2016, 545-546: 48-56. DOI:10.1016/j.scitotenv.2015.12.040 |
[43] | Wei R C, Ge F, Zhang L L, et al. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China[J]. Chemosphere, 2016, 144: 2377-2383. DOI:10.1016/j.chemosphere.2015.10.126 |
[44] | Rabølle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40(7): 715-722. DOI:10.1016/S0045-6535(99)00442-7 |
[45] | Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175: 22-29. DOI:10.1016/j.envpol.2012.12.008v.2012.11.087 |
[46] | Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444: 183-195. DOI:10.1016/j.scitotenv.2012.11.087 |
[47] | Siedlewicz G, Białk-Bielińska A, Borecka M, et al. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea — summary of 3 years of studies[J]. Marine Pollution Bulletin, 2018, 129(2): 787-801. DOI:10.1016/j.marpolbul.2017.10.075 |
[48] | Ding H J, Wu Y X, Zhang W H, et al. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China[J]. Chemosphere, 2017, 184: 137-147. DOI:10.1016/j.chemosphere.2017.05.148 |
[49] | Chen K, Zhou J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95: 604-612. DOI:10.1016/j.chemosphere.2013.09.119 |
[50] | Jechalke S, Heuer H, Siemens J, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends in Microbiology, 2014, 22(9): 536-545. DOI:10.1016/j.tim.2014.05.005 |
[51] | Wang Y J, Sun R J, Xiao A Y, et al. Phosphate affects the adsorption of tetracycline on two soils with different characteristics[J]. Geoderma, 2010, 156(3-4): 237-242. DOI:10.1016/j.geoderma.2010.02.022 |
[52] | Yang H R, Dong H, Huang Y R, et al. Interactions of microplastics and main pollutants and environmental behavior in soils[J]. Science of the Total Environment, 2022, 821. DOI:10.1016/j.scitotenv.2022.153511 |
[53] |
褚献献, 郑波, 何楠, 等. 微塑料与污染物相互作用的研究进展[J]. 环境化学, 2021, 40(2): 427-435. Chu X X, Zheng B, He N, et al. Progress on the interaction between microplastics and contaminants[J]. Environmental Chemistry, 2021, 40(2): 427-435. |
[54] | Chen W R, Huang C H. Adsorption and transformation of tetracycline antibiotics with aluminum oxide[J]. Chemosphere, 2010, 79(8): 779-785. DOI:10.1016/j.chemosphere.2010.03.020 |
[55] | Ji L L, Wan Y Q, Zheng S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption[J]. Environmental Science & Technology, 2011, 45(13): 5580-5586. |
[56] | Wu H H, Xie H R, He G P, et al. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite[J]. Applied Clay Science, 2016, 119: 161-169. DOI:10.1016/j.clay.2015.08.001 |
[57] | Chang P H, Li Z H, Jean J S, et al. Adsorption of tetracycline on 2: 1 layered non-swelling clay mineral illite[J]. Applied Clay Science, 2012, 67-68: 158-163. DOI:10.1016/j.clay.2011.11.004 |
[58] | Bao Y Y, Zhou Q X, Wang Y Y. Adsorption characteristics of tetracycline by two soils: assessing role of soil organic matter[J]. Soil Research, 2009, 47(3): 286-295. DOI:10.1071/SR08112 |
[59] | Figueroa R A, MacKay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils[J]. Environmental Science & Technology, 2005, 39(17): 6664-6671. |
[60] | Li Y, Shi M X, Xia M Z, et al. The enhanced adsorption of Ampicillin and Amoxicillin on modified montmorillonite with dodecyl dimethyl benzyl ammonium chloride: experimental study and density functional theory calculation[J]. Advanced Powder Technology, 2021, 32(10): 3465-3475. DOI:10.1016/j.apt.2021.08.001 |
[61] | Zhao H J, Lyu Y T, Hu J R, et al. Decipher the molecular descriptors and mechanisms controlling sulfonamide adsorption onto mesoporous carbon: density functional theory calculation and partial least-squares path modeling[J]. Journal of Hazardous Materials, 2022, 436. DOI:10.1016/j.jhazmat.2022.129299 |
[62] |
赵鑫宇, 陈慧, 赵波, 等. 石家庄市土壤中喹诺酮类抗生素时空分布及其风险评估[J]. 环境科学, 2023, 44(4): 2223-2233. Zhao X Y, Chen H, Zhao B, et al. Spatial-temporal distribution and risk assessment of quinolone antibiotics in soil for Shijiazhuang City[J]. Environmental Science, 2023, 44(4): 2223-2233. |
[63] |
瞿旭. 畜禽养殖区土壤中抗生素污染特征与垂向迁移机制研究[D]. 徐州: 中国矿业大学, 2020. Qu X. Study on the pollution characteristics and vertical migration mechanism of antibiotics in soil of livestock and poultry breeding areas[D]. Xuzhou: China University of Mining and Technology, 2020. |
[64] | Zhao F K, Chen L D, Yang L, et al. Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.114112 |
[65] | Zhao F K, Yang L, Chen L D, et al. Soil contamination with antibiotics in a typical peri-urban area in eastern China: seasonal variation, risk assessment, and microbial responses[J]. Journal of Environmental Sciences, 2019, 79: 200-212. DOI:10.1016/j.jes.2018.11.024 |
[66] | Zhang H B, Zhou Y, Huang Y J, et al. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures[J]. Chemosphere, 2016, 152: 229-237. DOI:10.1016/j.chemosphere.2016.02.111 |
[67] |
高璐琰, 杨钟, 武瑞兵, 等. 细菌耐药性研究进展[J]. 中国畜牧兽医, 2013, 40(7): 162-166. Gao L Y, Yang Z, Wu R B, et al. Research progresss on bacterial antimicrobial resistance[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(7): 162-166. DOI:10.3969/j.issn.1671-7236.2013.07.038 |
[68] | Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440. DOI:10.1073/pnas.1222743110 |
[69] | Gómez-Gómez C, Blanco-Picazo P, Brown-Jaque M, et al. Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-49898-0 |
[70] | Li W, Liu Z S, Hu B L, et al. Co-occurrence of crAssphage and antibiotic resistance genes in agricultural soils of the Yangtze River Delta, China[J]. Environment International, 2021, 156. DOI:10.1016/j.envint.2021.106620 |
[71] |
陈莫莲, 安新丽, 杨凯, 等. 土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展[J]. 应用生态学报, 2021, 32(6): 2267-2274. Chen M L, An X L, Yang K, et al. Soil phage and their mediation on the horizontal transfer of antibiotic resistance genes: a review[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2267-2274. |
[72] | Chen M L, An X L, Liao H, et al. Viral community and virus-associated antibiotic resistance genes in soils amended with organic fertilizers[J]. Environmental Science & Technology, 2021, 55(20): 13881-13890. |
[73] | Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450. |
[74] | Li H N, Li B X, Ma J L, et al. Fate of antibiotic-resistant bacteria and antibiotic resistance genes in the electrokinetic treatment of antibiotic-polluted soil[J]. Chemical Engineering Journal, 2018, 337: 584-594. DOI:10.1016/j.cej.2017.12.154 |
[75] | Zhuang M, Achmon Y, Cao Y P, et al. Distribution of antibiotic resistance genes in the environment[J]. Environmental Pollution, 2021, 285. DOI:10.1016/j.envpol.2021.117402 |
[76] |
刘昌孝. 全球关注: 重视抗生素发展与耐药风险的对策[J]. 中国抗生素杂志, 2019, 44(1): 1-8. Liu C X. Global concern: strategies for antibiotic development and risk of resistance[J]. Chinese Journal of Antibiotics, 2019, 44(1): 1-8. DOI:10.3969/j.issn.1001-8689.2019.01.001 |
[77] | Fang H, Wang H F, Cai L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science & Technology, 2015, 49(2): 1095-1104. |
[78] |
黄福义, 周曙仡聃, 王佳妮, 等. 不同作物农田土壤抗生素抗性基因多样性[J]. 环境科学, 2021, 42(6): 2975-2980. Huang F Y, Zhou S Y D, Wang J N, et al. Profiling of antibiotic resistance genes in different croplands[J]. E nvironmental Science, 2021, 42(6): 2975-2980. |
[79] | Du S, Shen J P, Hu H W, et al. Large-scale patterns of soil antibiotic resistome in Chinese croplands[J]. Science of the Total Environment, 2020, 712. DOI:10.1016/j.scitotenv.2019.136418 |
[80] | Zhu D, Xiang Q, Yang X R, et al. Trophic transfer of antibiotic resistance genes in a soil detritus food chain[J]. Environmental Science & Technology, 2019, 53(13): 7770-7781. |
[81] | Chen Z Q, Fu Q Q, Wen Q X, et al. Microbial community competition rather than high-temperature predominates ARGs elimination in swine manure composting[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127149 |
[82] | Fan J X, Zou L, Duan T, et al. Occurrence and distribution of microplastics in surface water and sediments in China' s inland water systems: a critical review[J]. Journal of Cleaner Production, 2022, 331. DOI:10.1016/j.jclepro.2021.129968 |
[83] | Huang Y, Liu Q, Jia W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.114096 |
[84] | Ya H B, Jiang B, Xing Y, et al. Recent advances on ecological effects of microplastics on soil environment[J]. Science of the Total Environment, 2021, 798. DOI:10.1016/j.scitotenv.2021.149338 |
[85] | Wang Y, Wang X J, Li Y, et al. Effects of coexistence of tetracycline, copper and microplastics on the fate of antibiotic resistance genes in manured soil[J]. Science of the Total Environment, 2021, 790. DOI:10.1016/j.scitotenv.2021.148087 |
[86] | Lu X M, Lu P Z, Liu X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil[J]. Science of the Total Environment, 2020, 709. DOI:10.1016/j.scitotenv.2019.136276 |
[87] | Zhang H P, Chen S Y, Zhang Q K, et al. Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil[J]. Environmental Pollution, 2020, 259. DOI:10.1016/j.envpol.2019.113877 |
[88] | Glick B R. Using soil bacteria to facilitate phytoremediation[J]. Biotechnology Advances, 2010, 28(3): 367-374. DOI:10.1016/j.biotechadv.2010.02.001 |
[89] | Carvalho P N, Basto M C P, Almeida C M R, et al. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands[J]. Environmental Science and Pollution Research, 2014, 21(20): 11729-11763. DOI:10.1007/s11356-014-2550-3 |
[90] | Zhou Q X, Cai Z, Zhang Z N, et al. Ecological remediation of hydrocarbon contaminated soils with weed plant[J]. Journal of Resources and Ecology, 2011, 2(2): 97-105. DOI:10.3969/j.issn.1674-764x.2011.02.001 |
[91] | Wei S H, Zhou Q X. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting (5 pp)[J]. Environmental Science and Pollution Research, 2006, 13(3): 151-155. DOI:10.1065/espr2005.06.269 |
[92] | Alkorta I, Garbisu C. Phytoremediation of organic contaminants in soils[J]. Bioresource Technology, 2001, 79(3): 273-276. DOI:10.1016/S0960-8524(01)00016-5 |
[93] | Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils[J]. Trends in Biotechnology, 1995, 13(9): 393-397. DOI:10.1016/S0167-7799(00)88987-8 |
[94] | Wenzel W W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils[J]. Plant and Soil, 2009, 321(1-2): 385-408. DOI:10.1007/s11104-008-9686-1 |
[95] |
裴孟, 梁玉婷, 易良银, 等. 黑麦草对土壤中残留抗生素的降解及其对微生物活性的影响[J]. 环境工程学报, 2017, 11(5): 3179-3186. Pei M, Liang Y T, Yi L Y, et al. Degradation of residual antibiotics in soils by ryegrass and its effect on microbial activity[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3179-3186. |
[96] |
周显勇, 刘鸿雁, 刘艳萍, 等. 植物修复重金属和抗生素复合污染土壤微生物数量和酶活性的变化[J]. 农业环境科学学报, 2019, 38(6): 1248-1255. Zhou X Y, Liu H Y, Liu Y P, et al. Changes in microbial populations and enzyme activity under phytoremediation in soil co-contaminated with heavy metals and antibiotics[J]. Journal of Agro-Environment Science, 2019, 38(6): 1248-1255. |
[97] | Cui E P, Cui B J, Fan X Y, et al. Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals[J]. Science of the Total Environment, 2021, 784. DOI:10.1016/j.scitotenv.2021.147093 |
[98] | Ma T T, Zhou L Q, Chen L K, et al. Oxytetracycline toxicity and its effect on phytoremediation by Sedum plumbizincicola and Medicago sativa in metal-contaminated soil[J]. Journal of Agricultural and Food Chemistry, 2016, 64(42): 8045-8053. DOI:10.1021/acs.jafc.6b02140 |
[99] |
滕应, 骆永明. 设施土壤酞酸酯污染与生物修复研究[M]. 北京: 科学出版社, 2014. Teng Y, Luo Y M. Phthalate esters pollution and bioremediation of greenhouse soils[M]. Beijing: Science Press, 2014. |
[100] |
牛之欣, 孙丽娜, 孙铁珩. 重金属污染土壤的植物-微生物联合修复研究进展[J]. 生态学杂志, 2009, 28(11): 2366-2373. Niu Z X, Sun L N, Sun T H. Plant-microorganism combined remediation of heavy metals-contaminated soils: its research progress[J]. Chinese Journal of Ecology, 2009, 28(11): 2366-2373. |
[101] | Joner E J, Leyval C. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza[J]. Environmental Science & Technology, 2003, 37(11): 2371-2375. |
[102] | Hoang T T T, Tu L T C, Le N P, et al. A preliminary study on the phytoremediation of antibiotic contaminated sediment[J]. International Journal of Phytoremediation, 2013, 15(1): 65-76. DOI:10.1080/15226514.2012.670316 |
[103] |
陈苏, 陈宁, 晁雷, 等. 土霉素、镉复合污染土壤的植物-微生物联合修复实验研究[J]. 生态环境学报, 2015, 24(9): 1554-1559. Chen S, Chen N, Chao L, et al. The Experimental study of polluted soils with oxytetracycline and cadmium by plant microbial remediation[J]. Ecology and Environmental Sciences, 2015, 24(9): 1554-1559. DOI:10.16258/j.cnki.1674-5906.2015.09.020 |
[104] | Brussaard L, Pulleman M M, Ouédraogo É, et al. Soil fauna and soil function in the fabric of the food web[J]. Pedobiologia, 2007, 50(6): 447-462. DOI:10.1016/j.pedobi.2006.10.007 |
[105] | Blouin M, Hodson M E, Delgado E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European Journal of Soil Science, 2013, 64(2): 161-182. DOI:10.1111/ejss.12025 |
[106] | Sun Y, Zhao L X, Li X J, et al. Stimulation of earthworms (Eisenia fetida) on soil microbial communities to promote metolachlor degradation[J]. Environmental Pollution, 2019, 248: 219-228. DOI:10.1016/j.envpol.2019.01.058 |
[107] | Žaltauskait J, Kniuipyt I, Praspaliauskas M. Earthworm Eisenia fetida potential for sewage sludge amended soil valorization by heavy metal remediation and soil quality improvement[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127316 |
[108] | Ahadi N, Sharifi Z, Hossaini S M T, et al. Remediation of heavy metals and enhancement of fertilizing potential of a sewage sludge by the synergistic interaction of woodlice and earthworms[J]. Journal of Hazardous Materials, 2020, 385. DOI:10.1016/j.jhazmat.2019.121573 |
[109] | Contreras-Ramos S M, Álvarez-Bernal D, Dendooven L. Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida)[J]. Soil Biology and Biochemistry, 2008, 40(7): 1954-1959. DOI:10.1016/j.soilbio.2008.04.009 |
[110] | Li X M, Lin Z, Luo C L, et al. Enhanced microbial degradation of pentachlorophenol from soil in the presence of earthworms: evidence of functional bacteria using DNA-stable isotope probing[J]. Soil Biology and Biochemistry, 2015, 81: 168-177. DOI:10.1016/j.soilbio.2014.11.011 |
[111] | Hao Y Q, Zhao L X, Sun Y, et al. Enhancement effect of earthworm (Eisenia fetida) on acetochlor biodegradation in soil and possible mechanisms[J]. Environmental Pollution, 2018, 242: 728-737. DOI:10.1016/j.envpol.2018.07.029 |
[112] | Xu H J, Bai J, Li W Y, et al. Mechanisms of the enhanced DDT removal from soils by earthworms: identification of DDT degraders in drilosphere and non-drilosphere matrices[J]. Journal of Hazardous Materials, 2021, 404. DOI:10.1016/j.jhazmat.2020.124006 |
[113] | Lu Y F, Lu M, Peng F, et al. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms[J]. Chemosphere, 2014, 106: 44-50. DOI:10.1016/j.chemosphere.2013.12.089 |
[114] | Valizadeh S, Lee S S, Baek K, et al. Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: a review[J]. Environmental Research, 2021, 200. DOI:10.1016/j.envres.2021.111757 |
[115] | Li H, Luo Q P, Pu Q, et al. Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil[J]. Journal of Hazardous Materials, 2022, 426. DOI:10.1016/j.jhazmat.2021.128127 |
[116] | Yang S D, Zhao L X, Chang X P, et al. Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi)[J]. Science of the Total Environment, 2021, 781. DOI:10.1016/j.scitotenv.2021.146679 |
[117] | Lin Z, Zhen Z, Luo S W, et al. Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil[J]. Journal of Hazardous Materials, 2021, 412. DOI:10.1016/j.jhazmat.2021.125212 |
[118] | Cao J, Wang C, Dou Z X, et al. Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation[J]. Journal of Hazardous Materials, 2018, 341: 346-354. DOI:10.1016/j.jhazmat.2017.07.038 |
[119] |
孙平平. 蚯蚓促进土壤中残留四环素降解的机制研究[D]. 扬州: 扬州大学, 2021. Sun P P. The mechanism research of earthworm promoting the degradation of residual tetracycline in soil[D]. Yangzhou: Yangzhou University, 2021. |
[120] | Sun M M, Chao H Z, Zheng X X, et al. Ecological role of earthworm intestinal bacteria in terrestrial environments: a review[J]. Science of the Total Environment, 2020, 740. DOI:10.1016/j.scitotenv.2020.140008 |
[121] | Drake H L, Horn M A. Earthworms as a transient heaven for terrestrial denitrifying microbes: a review[J]. Engineering in Life Sciences, 2006, 6(3): 261-265. DOI:10.1002/elsc.200620126 |
[122] | Jager T, van der Wal L, Fleuren R H L J, et al. Bioaccumulation of organic chemicals in contaminated soils: ?evaluation of bioassays with earthworms[J]. Environmental Science & Technology, 2005, 39(1): 293-298. |
[123] | Shan J, Xu J, Zhou W Q, et al. Enhancement of chlorophenol sorption on soil by geophagous earthworms (Metaphire guillelmi)[J]. Chemosphere, 2011, 82(2): 156-162. DOI:10.1016/j.chemosphere.2010.10.047 |
[124] | Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, et al. Potential of earthworms to accelerate removal of organic contaminants from soil: a review[J]. Applied Soil Ecology, 2014, 79: 10-25. DOI:10.1016/j.apsoil.2014.02.010 |
[125] | Ding J, Zhu D, Hong B, et al. Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota[J]. Environment International, 2019, 124: 145-152. DOI:10.1016/j.envint.2019.01.017 |
[126] | Dong L X, Gao J, Xie X J, et al. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida[J]. Chemosphere, 2012, 89(1): 44-51. DOI:10.1016/j.chemosphere.2012.04.010 |
[127] |
展海银, 周启星. 环境中四环素类抗生素污染处理技术研究进展[J]. 环境工程技术学报, 2021, 11(3): 571-581. Zhan H Y, Zhou Q X. Research progress on treatment technology of tetracycline antibiotics pollution in the environment[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 571-581. |
[128] |
滕应, 骆永明, 李振高. 污染土壤的微生物修复原理与技术进展[J]. 土壤, 2007, 39(4): 497-502. Teng Y, Luo Y M, Li Z G. Principles and techniques of microbial remediation of polluted soils[J]. Soils, 2007, 39(4): 497-502. |
[129] |
刘蓓, 李艳霞, 张雪莲, 等. 兽药抗生素对土壤微生物群落的影响[J]. 生态毒理学报, 2013, 8(6): 839-846. Liu B, Li Y X, Zhang X L, et al. Effects of veterinary antibiotics on soil microbial community: a review[J]. Asian Journal of Ecotoxicology, 2013, 8(6): 839-846. |
[130] | Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.00338 |
[131] | Yin F B, Dong H M, Zhang W Q, et al. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline[J]. Bioresource Technology, 2018, 250: 247-255. DOI:10.1016/j.biortech.2017.11.015 |
[132] | Aydin S, Ince B, Ince O. Application of real-time PCR to determination of combined effect of antibiotics on bacteria, methanogenic archaea, archaea in anaerobic sequencing batch reactors[J]. Water Research, 2015, 76: 88-98. DOI:10.1016/j.watres.2015.02.043 |
[133] |
付娆, 龚骏, 张倩倩. 土霉素对扇形游仆虫(原生生物)种群生长及遗传多样性的影响[J]. 中国科学: 生命科学, 2016, 46(9): 1113-1120. Fu R, Gong J, Zhang Q Q. Effects of oxytetracycline on population growth and genetic diversity of Euplotes vannus (marine protist)[J]. Scientia Sinica(Vitae), 2016, 46(9): 1113-1120. |
[134] |
王晓洁, 赵蔚, 张志超, 等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学: 技术科学, 2021, 51(6): 615-636. Wang X J, Zhao W, Zhang Z C, et al. Veterinary antibiotics in soils: environmental processes, ecotoxicity, and risk mitigation[J]. Scientia Sinica(Technologica), 2021, 51(6): 615-636. |
[135] |
张澜, 刘云, 陈瑞环, 等. 真菌对磺胺二甲氧嘧啶降解过程的转录组分析及差异表达基因的功能分析[J]. 环境科学学报, 2021, 41(4): 1366-1374. Zhang L, Liu Y, Chen R H, et al. Transcriptomic analysis and differentially expressed genes identification of fungi upon degradation of sulfadimethoxine[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1366-1374. DOI:10.13671/j.hjkxxb.2020.0313 |
[136] |
王强锋, 朱彭玲, 夏中梅, 等. 三种农用抗生素降解真菌的筛选及其降解性能[J]. 农业资源与环境学报, 2018, 35(6): 533-539. Wang Q F, Zhu P L, Xia Z M, et al. Screening and degradation properties of three kinds of agricultural antibiotics degrading fungi[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 533-539. DOI:10.13254/j.jare.2018.0069 |
[137] | 梁斌, 王爱杰, 漆梦媛, 等. 磺胺类抗生素协同降解细菌及其应用[P]. 中国专利: CN 111518715A, 2020-08-11. |
[138] |
史艳财. 猪粪、沼液农用重金属和抗生素的生态风险及生物调控研究[D]. 广州: 华南农业大学, 2016. Shi Y C. Ecological risk of heavy metals and antibiotics in pig manure and slurry application and its biological regulation[D]. Guangzhou: South China Agricultural University, 2016. |
[139] | 解开治, 徐培智, 卢钰升, 等. 四环素类抗生素污染土壤原位微生物修复剂及制备方法与应用[P]. 中国专利: CN 110592067A, 2019-12-20. |
[140] | Liu M R, Feng P Y, Kakade A, et al. Reducing residual antibiotic levels in animal feces using intestinal Escherichia coli with surface-displayed erythromycin esterase[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2020.122032 |
[141] | Sun T, Miao J B, Saleem M, et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning[J]. Journal of Hazardous Materials, 2020, 398. DOI:10.1016/j.jhazmat.2020.122941 |
[142] | Shi Y K, Lin H, Ma J W, et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123996 |
[143] | Hong X X, Zhao Y C, Zhuang R D, et al. Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation[J]. RSC Advances, 2020, 10(55): 33086-33102. DOI:10.1039/D0RA04705H |
[144] | Mehrotra T, Dev S, Banerjee A, et al. Use of immobilized bacteria for environmental bioremediation: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(5). DOI:10.1016/j.jece.2021.105920 |
[145] | Daronch N A, Kelbert M, Pereira C S, et al. Elucidating the choice for a precise matrix for laccase immobilization: a review[J]. Chemical Engineering Journal, 2020, 397. DOI:10.1016/j.cej.2020.125506 |
[146] | Wu C C, Zhi D, Yao B, et al. Immobilization of microbes on biochar for water and soil remediation: a review[J]. Environmental Research, 2022, 212. DOI:10.1016/j.envres.2022.113226 |
[147] | 徐会娟, 李永涛, 郭桂芳, 等. 降解四环素的贝莱斯芽孢杆菌及磁性固定化微生物复合材料与应用[P]. 中国专利: CN 111662839A, 2020-09-15. |
[148] |
何玉洁, 周凯萍, 饶怡璇, 等. 土壤中抗生素的环境风险及污染土壤的生物修复技术[J]. 生物工程学报, 2021, 37(10): 3487-3504. He Y J, Zhou K P, Rao Y X, et al. Environmental risks of antibiotics in soil and the related bioremediation technologies[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3487-3504. DOI:10.13345/j.cjb.210421 |
[149] | Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science, 2012, 337(6095): 686-690. DOI:10.1126/science.1217412 |
[150] | Li T, Li R X, Zhou Q X. The application and progress of bioelectrochemical systems (BESs) in soil remediation: a review[J]. Green Energy & Environment, 2021, 6(1): 50-65. |
[151] |
周顺桂. 微生物胞外呼吸: 原理与应用[M]. 北京: 科学出版社, 2018. Zhou S G. Microbial extracellular respiration: principle and application[M]. Beijing: Science Press, 2018. |
[152] | Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. DOI:10.1038/nature03661 |
[153] | Nagarajan H, Embree M, Rotaru A E, et al. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association[J]. Nature Communications, 2013, 4. DOI:10.1038/ncomms3809 |
[154] | Lovley D R. Bug juice: harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4(7): 497-508. DOI:10.1038/nrmicro1442 |
[155] | Logan B E, Rossi R, Ragab A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology, 2019, 17(5): 307-319. DOI:10.1038/s41579-019-0173-x |
[156] | Logan B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381. DOI:10.1038/nrmicro2113 |
[157] | Zhang B, Cheng H Y, Wang A J. Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens[J]. Bioelectrochemistry, 2021, 138. DOI:10.1016/j.bioelechem.2020.107683 |
[158] |
刘向, 张君奇, 张保财, 等. 强化产电微生物与电极间电子传递速率的研究进展[J]. 生物工程学报, 2021, 37(2): 361-377. Liu X, Zhang J Q, Zhang B C, et al. Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface[J]. Chinese Journal of Biotechnology, 2021, 37(2): 361-377. |
[159] | Cao B C, Zhao Z P, Peng L L, et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells[J]. Science, 2021, 373(6561): 1336-1340. DOI:10.1126/science.abf3427 |
[160] | Chatterjee P, Dessì P, Kokko M, et al. Selective enrichment of biocatalysts for bioelectrochemical systems: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 10-23. DOI:10.1016/j.rser.2019.04.012 |
[161] | Jiang Y, Zeng R J. Bidirectional extracellular electron transfers of electrode-biofilm: mechanism and application[J]. Bioresource Technology, 2019, 271: 439-448. DOI:10.1016/j.biortech.2018.09.133 |
[162] | Zhao J K, Zhang C Y, Sun C, et al. Electron transfer mechanism of biocathode in a bioelectrochemical system coupled with chemical absorption for NO removal[J]. Bioresource Technology, 2018, 254: 16-22. DOI:10.1016/j.biortech.2018.01.066 |
[163] | Yu L P, Yuan Y, Rensing C, et al. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer[J]. Biosensors and Bioelectronics, 2018, 106: 21-28. DOI:10.1016/j.bios.2018.01.032 |
[164] | Kumar A, Hsu L H H, Kavanagh P, et al. The ins and outs of microorganism-electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1(3). DOI:10.1038/s41570-017-0024 |
[165] | Mohanakrishna G, Abu-Reesh I M, Kondaveeti S, et al. Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253: 16-21. DOI:10.1016/j.biortech.2018.01.005 |
[166] | Zhang X L, Li X J, Zhao X D, et al. Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2019.121790 |
[167] | Wang X, Cai Z, Zhou Q X, et al. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells[J]. Biotechnology and Bioengineering, 2012, 109(2): 426-433. DOI:10.1002/bit.23351 |
[168] | Abbas S Z, Rafatullah M, Khan M A, et al. Bioremediation and electricity generation by using open and closed sediment microbial fuel cells[J]. Frontiers in Microbiology, 2019, 9. DOI:10.3389/fmicb.2018.03348 |
[169] | Zhang B G, Feng C P, Ni J R, et al. Simultaneous reduction of vanadium (V) and chromium (Ⅵ) with enhanced energy recovery based on microbial fuel cell technology[J]. Journal of Power Sources, 2012, 204: 34-39. DOI:10.1016/j.jpowsour.2012.01.013 |
[170] | Wen Q, Kong F Y, Zheng H T, et al. Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell[J]. Journal of Power Sources, 2011, 196(5): 2567-2572. DOI:10.1016/j.jpowsour.2010.10.085 |
[171] | Yan W F, Xiao Y, Yan W D, et al. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review[J]. Chemical Engineering Journal, 2019, 358: 1421-1437. DOI:10.1016/j.cej.2018.10.128 |
[172] | Domínguez-Garay A, Berná A, Ortiz-Bernad I, et al. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil[J]. Environmental Science & Technology, 2013, 47(4): 2117-2122. |
[173] | Li X J, Wang X, Ren Z J, et al. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil[J]. Chemosphere, 2015, 141: 62-70. DOI:10.1016/j.chemosphere.2015.06.025 |
[174] | Li X J, Wang X, Zhao Q, et al. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells[J]. Biosensors and Bioelectronics, 2016, 85: 135-141. DOI:10.1016/j.bios.2016.05.001 |
[175] | Li X J, Li Y, Zhang X L, et al. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells[J]. Science of the Total Environment, 2019, 651: 796-806. DOI:10.1016/j.scitotenv.2018.09.098 |
[176] | Zhao X D, Li X J, Zhang X L, et al. Bioelectrochemical removal of tetracycline from four typical soils in China: a performance assessment[J]. Bioelectrochemistry, 2019, 129: 26-33. DOI:10.1016/j.bioelechem.2019.04.016 |
[177] | Abrevaya X C, Sacco N, Mauas P J D, et al. Archaea-based microbial fuel cell operating at high ionic strength conditions[J]. Extremophiles, 2011, 15(6): 633-642. DOI:10.1007/s00792-011-0394-z |
[178] | Gimsing A L, Borggaard O K, Bang M. Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils[J]. European Journal of Soil Science, 2004, 55(1): 183-191. DOI:10.1046/j.1365-2389.2003.00585.x |
[179] | Zhao X D, Li X J, Li Y, et al. Metagenomic analysis reveals functional genes in soil microbial electrochemical removal of tetracycline[J]. Journal of Hazardous Materials, 2021, 408. DOI:10.1016/j.jhazmat.2020.124880 |
[180] | Song H L, Zhang C, Lu Y X, et al. Enhanced removal of antibiotics and antibiotic resistance genes in a soil microbial fuel cell via in situ remediation of agricultural soils with multiple antibiotics[J]. Science of the Total Environment, 2022, 829. DOI:10.1016/j.scitotenv.2022.154406 |
[181] | Zhao X D, Li X J, Li Y, et al. Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation[J]. Biotechnology for Biofuels, 2019, 12. DOI:10.1186/s13068-019-1500-1 |
[182] | Li Y, Li X J, Sun Y, et al. Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells[J]. Environmental Science and Pollution Research, 2018, 25(17): 16900-16912. DOI:10.1007/s11356-018-1871-z |
[183] | Lu L, Xing D F, Ren Z J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell[J]. Bioresource Technology, 2015, 195: 115-121. DOI:10.1016/j.biortech.2015.05.098 |
[184] | Hari A R, Katuri K P, Logan B E, et al. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep38690 |
[185] |
赵晓东, 李晓晶, 赵鹏宇, 等. 土壤微生物电化学系统降解四环素的机理[J]. 中国环境科学, 2021, 41(2): 778-786. Zhao X D, Li X J, Zhao P Y, et al. Mechanism of tetracycline degradation by soil microbial electrochemical systems[J]. China Environmental Science, 2021, 41(2): 778-786. |
[186] | Song H L, Li H, Zhang S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350: 920-929. DOI:10.1016/j.cej.2018.06.035 |
[187] | Chen J, Wang T T, Zhang K, et al. The fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from livestock wastewater (dominated by quinolone antibiotics) treated by microbial fuel cell (MFC)[J]. Ecotoxicology and Environmental Safety, 2021, 218. DOI:10.1016/j.ecoenv.2021.112267 |
[188] | Xue W D, Li F X, Zhou Q X. Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell[J]. Bioresource Technology, 2019, 289. DOI:10.1016/j.biortech.2019.121632 |
[189] | Wen H Y, Zhu H, Yan B X, et al. High removal efficiencies of antibiotics and low accumulation of antibiotic resistant genes obtained in microbial fuel cell-constructed wetlands intensified by sponge iron[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150220 |
[190] | Chen P, Guo X Y, Li S N, et al. A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes[J]. Environment International, 2021, 156. DOI:10.1016/j.envint.2021.106689 |
[191] | Yu H, Zhao Q L, Meng F C, et al. Deciphering the role of calcium peroxide on the fate of antibiotic resistance genes and mobile genetic elements during bioelectrochemically-assisted anaerobic composting of excess dewatered sludge[J]. Chemical Engineering Journal, 2020, 397. DOI:10.1016/j.cej.2020.125355 |