环境科学  2025, Vol. 46 Issue (3): 1435-1442   PDF    
南水北调泵站调节池表层沉积物抗生素抗性基因分布特征及影响因素
李菲1, 邱春生1,2, 王晨晨1,2, 许菲1, 王栋1,2, 刘楠楠1,2, 陈旭1,2, 王少坡1,2     
1. 天津城建大学环境与市政工程学院, 天津 300384;
2. 天津市水质科学与技术重点实验室, 天津 300384
摘要: 南水北调中线工程天津段原水枢纽泵站调节池承接引汉江原水至市区水厂, 是保障供水安全的重要设施, 上游原水携带的大量颗粒污染物沉积于调节池. 分别于2022年夏季、秋季、冬季和2023年春季采集调节池不同区域表层沉积物样品, 利用宏基因组测序技术, 分析其抗生素抗性基因(ARGs)的分布特征及影响因素, 并对沉积物ARGs与理化指标、微生物群落结构和可移动遗传元件(MGEs)类型的相关性进行了分析. 结果表明, 调节池表层沉积物样品中检测出20种抗生素抗性类型和921种ARGs亚型, 不同取样时间和取样点样品中优势ARGs为多重耐药类、MLS类、四环素类和糖肽类, 主要耐药机制为外排泵. 相关性分析发现, 沉积物的TN、NO3--N、TP和OM与多种丰度前20的ARGs呈显著相关(P < 0.05);丰度前20的微生物菌属中有19种与ARGs呈显著相关(P < 0.05);接合转移蛋白、重组酶和转座酶这些MGEs类型与多种丰度前20的ARGs呈显著正相关(P < 0.05).
关键词: 南水北调中线工程      抗生素抗性基因(ARGs)      宏基因组      时空分布      微生物群落结构     
Distribution Characteristics and Influencing Factors of Antibiotic Resistance Genes in Surface Sediments of Regulating Pond in South-to-North Water Transfer Pumping Station
LI Fei1 , QIU Chun-sheng1,2 , WANG Chen-chen1,2 , XU Fei1 , WANG Dong1,2 , LIU Nan-nan1,2 , CHEN Xu1,2 , WANG Shao-po1,2     
1. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China;
2. Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin 300384, China
Abstract: As an important facility to ensure the safety of the water supply, the regulating pond of a raw water pumping station in the Tianjin Section of the middle route of the South-to-North Water Transfer Project linked the raw water from the Hanjiang River with the urban water plants. Surface sediment samples from different regions of the regulator pond were collected in summer, autumn, and winter of 2022 and spring of 2023, respectively. Metagenomic sequencing technology was used to analyze the distribution characteristics and influencing factors of antibiotic resistance genes (ARGs), and the correlation between sediment ARGs and physicochemical indices, microbial community structure, and mobile genetic elements (MGEs) was also analyzed. The results showed that 20 antibiotic resistance types and 921 ARGs subtypes were detected in the surface sediment samples of the regulator pond. The dominant ARGs in the samples at different sampling times and sampling points were multidrug resistance, MLS, tetracycline, and glycopeptides, and the main resistance mechanism was efflux pump. Correlation analysis showed that TN, NO3--N, TP, and OM of sediments were significantly correlated (P < 0.05) with various ARGs of the top 20 ARGs. Among the top 20 microbial genera, 19 species were significantly correlated (P < 0.05) with ARGs. The MGEs types of conjugate transfer protein, recombinase, and transposase were significantly positively correlated (P < 0.05) with the top 20 ARGs.
Key words: middle route of the South-to-North Water Transfer Project      antibiotic resistance genes (ARGs)      metagenome      spatial-temporal distribution      microbial community structure     

抗生素是微生物或高等动植物所产生具有抗病原体或其他活性的次级代谢产物, 被广泛应用于医疗、畜牧及养殖等行业来治疗和防止细菌感染[1~3]. 但抗生素不能完全被机体吸收利用, 30%~90%的抗生素会随着尿液和粪便排出体外[4, 5]. 此外, 现有的污水处理工艺对抗生素的去除率仅为36%~79%[6], 残留的抗生素会通过排污、地表径流和土壤渗透等途径进入环境[7~9]. 我国各大流域地表水体均检测到一定含量的抗生素[10~13]. 抗生素不仅对环境造成直接污染[14], 还会导致环境中耐药细菌和抗生素抗性基因(antibiotic resistance genes, ARGs)的产生[15, 16]. 此外, ARGs可通过可移动遗传元件(mobile genetic elements, MGEs)水平转移[17], 对环境安全和人体健康产生潜在威胁[18].

南水北调工程是解决我国水资源分布不均及区域缺水问题的重大战略工程. 近年来在南水北调工程源头、调蓄湖泊和干渠中均检测到多种抗生素和ARGs的存在[19, 20]. 潘瑞等[21]在南水北调中线工程水源区丹江口水库和汉江春秋两季样本中分别检测出21类和19类ARGs. Hou等[22]针对南水北调东线工程受水区的9个湖泊和水库的研究也发现, 水体中ARGs主要包括33种抗生素抗性类型和242个ARGs亚型. 南水北调中线工程输水干渠跨4个省市, 途经人口密集区, 沿线面源污染、大气干湿沉降和雨水径流污染等对原水水质产生一定影响. 同时, 原水枢纽泵站和调节池作为工程末端配套设施, 负责协调引汉江原水于市区自来水厂, 引汉江原水中的颗粒污染物进入调节池后因流速下降大量沉积, 已有研究考察了调节池沉积物污染特征和内源污染释放情况[23, 24]. 但对于泵站调节池沉积物ARGs的相关研究还未见报道, 考察沉积物ARGs的分布特征及其影响因素, 对保障饮用水供水安全有重要意义.

本文以南水北调中线工程天津段原水枢纽泵站调节池为研究对象, 于2022~2023年采集调节池表层沉积物样品, 利用宏基因组测序技术分析不同季度和采样区表层沉积物中ARGs的分布特征, 并对ARGs与沉积物理化指标、微生物群落以及MGEs类型进行相关性分析, 以期为评价调节池表层沉积物内源污染释放风险和保障供水安全提供基础数据.

1 材料与方法 1.1 样品采集

根据泵站调节池沉积物分布特征, 共划分4个采样区, 如图 1所示, 包括进水区(X1)、缓滞区(X2)、中心区(X3)和出水区(X4). 分别于2022年7月(夏季)、2022年10月(秋季)、2022年12月(冬季)和2023年4月(春季)各采样一次. 采用抓泥斗采集表层沉积物样品, 置于铝箔袋, 样品冷藏运回实验室, -20 ℃保存[25]. 每个采样区采集3个平行样品.

图 1 泵站调节池采样区示意 Fig. 1 Schematic of sampling area of pumping station regulation pond

1.2 分析方法

采用便携式多参数分析仪(WTW Multi3620, 德国)现场测定pH. 沉积物氨氮(NH4+-N)采用氯化钾浸提-纳氏试剂分光光度法测定, 硝氮(NO3--N)采用饱和硫酸钙浸提-紫外分光光度法测定, 总氮(TN)采用碱性过硫酸钾氧化⁃紫外分光法测定, 总磷(TP)采用过硫酸钾氧化⁃紫外分光法测定, 有机质含量(OM)采用灼烧减量法测定.

1.3 宏基因组测序及生物信息学分析 1.3.1 DNA提取及宏基因组测序

使用E.Z.N.A.®Soil DNA Kit(Omega Bio-tek, 美国)试剂盒提取DNA. 使用NEXTflex Rapid DNA-Seq(Bioo Scientific, 美国)构建PE文库. 通过Illumina NovaSeq6000(Illumina, 美国)测序平台进行宏基因组测序(上海美吉生物医药科技有限公司), 获得的原始数据提交至NCBI数据库(SRP479885).

1.3.2 生物信息学分析

实验时采用多个样品平行混合测序, 各样品中的序列均引入了一段标示其样本来源信息的Index标签序列[26]. 筛选获得后续分析需要的质量更好的序列, 构建非冗余基因集, 将数据上传CARD数据库进行比对, 获得对应的ARGs功能注释信息, 计算每个样品中的基因丰度.

基因丰度计算方法如下(reads per kilobase million, RPKM):基因丰度以每百万reads中来自于某基因每千碱基长度的reads数来表示[27]. 计算公式如下:

式中, Ri表示该样本中比对到Genei上的reads数;Li表示Genei的核苷酸长度;表示该样本中所有基因对应的reads数总和.

1.4 数据分析

采用Excel软件进行数据的处理与统计, Origin软件绘制数据图, SPSS软件进行数据统计分析, Pearson相关性分析ARGs与理化指标、微生物群落以及MGEs类型的关系.

2 结果与讨论 2.1 泵站调节池表层沉积物中ARGs的分布特征

不同季节调节池表层沉积物中丰度前50的ARGs在不同取样区的分布情况如图 2所示. 不同样本中丰度最高的ARGs均为macB, 其次为tetA(58)evgS, 上述优势ARGs占各自样本ARGs序列总数的14.16%~17.03%. 调节池中不同季节和采样区表层沉积物样品中优势ARGs分别占各自样本ARGs序列总数的比例大致相同, 表明调节池表层沉积物不同季节和采样区样品中的优势ARGs基本一致.

横坐标为不同季节X1、X2、X3和X4取样点样品, 下同 图 2 泵站调节池表层沉积物中ARGs分布情况 Fig. 2 Distribution of ARGs in surface sediments of pumping station regulation pond

在16个表层沉积物样本中检测出20种抗生素抗性类型, 921个ARGs亚型. 不同抗性种类ARGs的丰度和耐药机制如图 3所示. 由图 3(a)可知在不同的表层沉积物样本中, ARGs的主要抗生素抗性类型为多重耐药类(multidrug, 18 767.79~22 184.50)、大环内酯-林可胺-链霉杀阳菌素类(macrolide-lincosamide-streptogramin, MLS类, 5 888.96~7 988.20)、四环素类(tetracycline, 4 609.97~5 663.63)和糖肽类(glycopeptide, 4 096.40~5 734.88), 占ARGs序列总数的74.13%~76.63%. 采样期间, ARGs丰度呈冬季(50 060.94, 均值, 2 785.46, 标准差, 下同) > 夏季(49 525.83, 1 038.98) > 秋季(49 099.64, 1 430.01) > 春季(48 754.91, 1 923.63)的趋势;不同采样点中ARGs丰度呈出水区(X4)(50 521.57, 1 985.23) > 池心区(X3)(50 340.89, 1 441.57) > 进水区(X1)(48 587.88, 1 993.96) > 边角区(X2)(47 990.98, 871.43)的趋势, 即沿调节池水体流向, 表层沉积物中ARGs丰度呈先下降后增加的趋势, 其中最大丰度出现在冬季的出水区(53 548.29), 最小丰度出现在冬季的进水区(46 047.64). 如图 3(b)所示, 不同样本中ARGs的耐药机制分布基本一致, 共检测出9种耐药机制, 其中主要的耐药机制为抗生素外排泵(antibiotic efflux), 相对丰度达到了59.89%~63.78%, 其次为抗生素靶点改变(antibiotic target alteration), 相对丰度为17.18%~21.28%.

(a)ARGs抗生素抗性类型, (b)ARGs耐药机制 图 3 泵站调节池沉积物中ARGs类型和耐药机制 Fig. 3 Types and resistance mechanisms of ARGs in sediments from pumping stations regulating pond

从ARGs注释结果来看, 冬季的ARGs数量明显高于其他季节. 调节池沉积物中ARGs主要的抗生素抗性类型为多重耐药类、MLS类和四环素类, 这与针对南水北调东线工程受水区湖泊水库[22]、唐山陡河水库[28]和南京地区饮用水[29]的研究结果相似. 减轻细菌耐药性产生的前提是确定ARGs的耐药机制[30], 本研究结果显示调节池沉积物中ARGs主要耐药机制为抗生素外排泵, 外排泵在细菌中广泛存在[31]. 沉积物中ARGs耐药机制的分布情况无明显差异, 南水北调水源地、供水干渠和泵站调节池相较于其他地表水体受人类活动影响较小, 这可能是导致ARGs种类和耐药机制稳定的原因[32, 33].

2.2 表层沉积物中ARGs与理化指标的关系 2.2.1 表层沉积物理化指标

表 1为泵站调节池表层沉积物的理化指标, 调节池沉积物pH值在6.70~7.90之间;ω(OM)在7.02%~16.74%之间, 其中秋季最高, 夏季最低, 各采样点间OM含量差异不大, ω(TN)为4 669.40~7 383.52 mg·kg-1之间. ω(NH4+-N)和ω(NO3--N)分别在45.82~221.52 mg·kg-1和0.98~10.37 mg·kg-1之间;ω(TP)为173.76~598.83 mg·kg-1之间, 其中夏季TP含量最高, 春季TP含量最低.

表 1 泵站调节池沉积物基本理化指标 Table 1 Basic physicochemical index of sediments from pumping stations regulating pond

2.2.2 沉积物中ARGs与理化指标相关性分析

为探究南水北调泵站调节池沉积物理化指标对ARGs分布特征的影响, 对丰度前20的ARGs与沉积物理化指标进行相关性分析, 结果如图 4所示. 沉积物的TN与msbAarlRefrAoptrA呈显著正相关(P < 0.05);NO3--N与parYrpoB2TaeAmsbArpoB呈显著正相关(P < 0.05), 与macBoleCmtrAvanRFbaeS呈显著负相关(P < 0.05);TP与oleC呈显著正相关(P < 0.05), 与novArpoB2TaeAmsbArpoB呈显著负相关(P < 0.05);OM与evgS呈显著正相关(P < 0.05);NH4+-N和pH值与丰度前20的ARGs无显著相关性. 环境因素可能会驱动和增强ARGs在环境中的传播[34]. 调节池沉积物中的TN和TP的含量与南水北调工程其他库区氮磷营养盐含量相比, 泵站调节池沉积物氮磷营养盐含量明显较高, 说明沿途污染物的输入对沉积物污染物含量有一定影响[35, 36]. 表层沉积物中氮磷营养盐含量与ARGs关系密切, 这一结果与林倩如等[37]针对湿地沉积物抗生素抗性基因的分布特征的研究结果一致. 除上述理化指标外, 还有多种因素会对ARGs的分布产生影响[38~40], 将来可以增加理化指标的检测种类, 更具体地研究ARGs在水、沉积物和土壤等环境介质中的分布特征.

色柱0~1表示正相关, -1~0表示负相关;*表示P < 0.05, **表示P < 0.01, ***表示P < 0.001 图 4 泵站调节池沉积物中ARGs和理化指标的关系 Fig. 4 Relationship between ARGs and physicochemical indices in sediments from pumping stations regulating pond

2.3 沉积物中ARGs与微生物群落的关系

泵站调节池表层沉积物中, 丰度前20的细菌属与丰度前20的ARGs相关性分析如图 5所示. ARGs与微生物间的相关性分析有助于发现ARGs的潜在宿主[41]. 丰度前20的微生物菌属中除g_Methanosarcina外, 其余19种与ARGs呈显著相关(P < 0.05). 其中, g_unclassified_p_BacteroidotaarlR呈显著正相关(P < 0.05), 涉及1种抗生素抗性类型和1种耐药机制;g_unclassified_p_Chloroflexi与10种ARGs呈显著相关(P < 0.05), 涉及6种抗生素抗性类型和3种耐药机制;g_unclassified_p_Proteobacteria与10种ARGs呈显著相关(P < 0.05), 涉及5种抗生素抗性类型和3种耐药机制;g_unclassified_c_Alphaproteobacteria与11种ARGs呈显著相关(P < 0.05), 涉及7种抗生素抗性类型和3种耐药机制;g_unclassified_c_GammaproteobacteriabcrAnovA呈显著相关(P < 0.01), 涉及2种抗生素抗性类型和1种耐药机制;g_unclassified_f_Anaerolineaceae与10种ARGs呈显著相关(P < 0.05), 涉及6种抗生素抗性类型和3种耐药机制. ARGs可在细菌群落间进行传播, 而且可以随着宿主的增殖不断扩增[42]. 与目的ARGs呈显著正相关的菌属可能是ARGs的潜在宿主[43]. 在本研究中部分菌属与多种ARGs类型显著相关并涉及多种耐药机制, 而有些菌属仅与1种抗生素抗性类型ARGs具有相关性, 表明这些微生物可能是多种ARGs的共同潜在宿主[44]. 与多种菌属之间呈显著正相关(P < 0.05)的部分ARGs可能有多个潜在的微生物宿主.

1.g_unclassified_o_Bacteroidales, 2.g_unclassified_c_Deltaproteobacteria, 3.g_unclassified_d_Bacteria, 4.g_unclassified_p_Spirochaetes, 5.g_unclassified_p_Bacteroidota, 6.g_unclassified_p_Chloroflexi, 7.g_unclassified_p_Candidatus_Aminicenantes, 8.g_Methanoregula, 9.g_unclassified_p_Acidobacteria, 10. g_unclassified_p_Proteobacteria, 11. g_unclassified_f_Saprospiraceae, 12. g_unclassified_c_Alphaproteobacteria, 13. g_unclassified_p_Planctomycetota, 14. g_Methanosarcina, 15. g_unclassified_p_Verrucomicrobia, 16 g_unclassified_c_Gammaproteobacteria, 17. g_unclassified_f_Anaerolineaceae, 18. g_unclassified_f_Syntrophaceae, 19. g_Cyanobium, 20. g_unclassified_f_Spirochaetaceae;色柱0~1表示正相关, -1~0表示负相关;*表示P < 0.05, **表示P < 0.01, ***表示P < 0.001, ****表示P < 0.0001 图 5 泵站调节池沉积物中ARGs与微生物菌属相关性分析 Fig. 5 Correlation analysis of ARGs and microbial genera in sediments from pumping stations regulating pond

2.4 沉积物中ARGs与MGEs类型的关系

为了进一步评估ARGs的潜在移动性, 对特定MGEs和ARGs的共现性关系进行研究. 泵站调节池表层沉积物中MGEs类型与丰度前20的ARGs相关性分析如图 6所示, 以评估不同样本中ARGs的潜在可移动性的差异. 接合转移蛋白(conjugate transfer protein)分别与macBbcrAefrAarlSmupAbaeSoptrA呈显著正相关(P < 0.05), 重组酶(recombinase)分别与macBbcrAefrAarlSmupAbaeSoptrA呈显著正相关(P < 0.05), 转座酶(transposase)分别与macBbcrAefrAarlSmupAbaeSoptrA呈显著正相关(P < 0.05). 上述结果表明, 接合转移蛋白、重组酶和转座酶这些MGEs类型是泵站调节池沉积物中微生物细胞ARGs水平转移的重要参与者. 3种MGEs类型都与macBbcrAefrAarlSmupAbaeSoptrA这些ARGs呈显著正相关(P < 0.05), 表明接合转移蛋白、重组酶和转座酶对这些ARGs的传播具有协同作用, 共同促进了ARGs的水平转移[45]. 因此MGEs在泵站调节池表层沉积物ARGs的传播中起重要作用.

色柱0~1表示正相关, -1~0表示负相关;*表示P < 0.05, **表示P < 0.01, ***表示P < 0.001 图 6 泵站调节池沉积物中ARGs与MGEs相关性分析 Fig. 6 Correlation analysis of ARGs and MGEs in sediments from pumping stations regulating pond

3 结论

(1)在调节池沉积物中, 共检测出20种抗生素抗性类型和921种ARGs亚型, 其中丰度前3的ARGs分别为macBtetA(58)evgS, 占各自样本ARGs序列总数的14.16%~17.03%. 抗生素外排泵是主要的耐药机制.

(2)丰度前20的ARGs与沉积物理化指标相关性分析发现, 沉积物的TN与msbAarlRefrAoptrA呈显著正相关(P < 0.05), NO3--N与parYrpoB2TaeAmsbArpoB呈显著正相关(P < 0.05), 与macBoleCmtrAvanRFbaeS呈显著负相关(P < 0.05);TP与oleC呈显著正相关(P < 0.05), 与novArpoB2TaeAmsbArpoB呈显著负相关(P < 0.05);OM与evgS呈显著正相关(P < 0.05);NH4+-N和pH值与丰度前20的ARGs无显著相关性. 沉积物中氮磷营养盐含量和pH值与ARGs关系密切.

(3)丰度前20的ARGs与丰度前20的微生物菌属相关性分析发现, 有19种菌属与ARGs呈显著相关(P < 0.05), 涉及多种抗生素抗性类型和耐药机制. 有18种菌属与多种ARGs呈显著正相关(P < 0.05), 17种菌属与多种ARGs呈显著负相关(P < 0.05).

(4)丰度前20的ARGs与MGEs类型相关性分析发现, 接合转移蛋白、重组酶和转座酶都分别与macBbcrAefrAarlSmupAbaeSoptrA呈显著正相关(P < 0.05), 表明这些MGEs类型是泵站调节池沉积物中微生物细胞ARGs水平转移的重要参与者. MGEs在泵站调节池表层沉积物ARGs的传播中起重要作用.

参考文献
[1] 侯伟, 孙莉, 杨晓, 等. 城市供水水源中抗生素抗性基因污染及其在饮用水厂的去除研究进展[J]. 环境污染与防治, 2022, 44(4): 525-528.
Hou W, Sun L, Yang X, et al. Advances of researches on antibiotic resistance genes pollution in urban water supply sources and removal in drinking water plants[J]. Environmental Pollution & Control, 2022, 44(4): 525-528.
[2] Xu J, Xu Y, Wang H M, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere, 2015, 119: 1379-1385. DOI:10.1016/j.chemosphere.2014.02.040
[3] 罗晓, 张文丽, 许曼, 等. 冬季河流中抗生素抗性基因和微生物群落相关性研究[J]. 环境科学与技术, 2019, 42(5): 20-26.
Luo X, Zhang W L, Xu M, et al. Correlation between antibiotic resistance genes and microbial community in winter rivers[J]. Environmental Science & Technology, 2019, 42(5): 20-26.
[4] 蔡东明, 欧阳洁, 丁锦建, 等. 抗生素消毒副产物的分析检测及毒性效应研究进展[J]. 分析化学, 2022, 50(3): 327-340.
Cai D M, Ouyang J, Ding J J, et al. Research progress on identification and toxic effects of antibiotics disinfection by-products[J]. Chinese Journal of Analytical Chemistry, 2022, 50(3): 327-340.
[5] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[6] He K, Soares A D, Adejumo H, et al. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106: 136-143. DOI:10.1016/j.jpba.2014.11.020
[7] Yuan K, Wang X W, Chen X, et al. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms[J]. Chemosphere, 2019, 234: 520-527. DOI:10.1016/j.chemosphere.2019.06.085
[8] 徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险[J]. 环境化学, 2010, 29(2): 169-178.
Xu B J, Luo Y, Zhou Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes (ARGs) in the environment[J]. Environmental Chemistry, 2010, 29(2): 169-178.
[9] 陈嘉瑜, 苏志国, 姚鹏城, 等. 废水排放对近海环境中抗生素抗性基因和微生物群落的影响[J]. 环境科学, 2022, 43(9): 4616-4624.
Chen J Y, Su Z G, Yao P C, et al. Effects of wastewater discharge on antibiotic resistance genes and microbial community in a coastal area[J]. Environmental Science, 2022, 43(9): 4616-4624.
[10] 李柏林, 张贺, 王俊, 等. 长江武汉段水源地典型抗生素及抗性基因污染特征与生态风险评价[J]. 环境科学, 2023, 44(4): 2032-2039.
Li B L, Zhang H, Wang J, et al. Pollution characteristics and risk assessment of antibiotics and resistance genes in different water sources in the Wuhan section of the Yangtze River[J]. Environmental Science, 2023, 44(4): 2032-2039.
[11] 封梦娟, 张芹, 宋宁慧, 等. 长江南京段水源水中抗生素的赋存特征与风险评估[J]. 环境科学, 2019, 40(12): 5286-5293.
Feng M J, Zhang Q, Song N H, et al. Occurrence characteristics and risk assessment of antibiotics in source water of the Nanjing reach of the Yangtze River[J]. Environmental Science, 2019, 40(12): 5286-5293.
[12] Li S, Shi W Z, Liu W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016)[J]. Science of the Total Environment, 2018, 615: 906-917.
[13] 袁杰, 邱春生, 李静, 等. 再生水补给湖泊中耐药致病微生物分布及影响因素[J]. 环境科学学报, 2023, 43(12): 336-345.
Yuan J, Qiu C S, Li J, et al. Distribution and the environmental factors associated with pathogenic and antibiotic-resistant bacteria in recharge lake receiving reclaimed water[J]. Acta Scientiae Circumstantiae, 2023, 43(12): 336-345.
[14] 陈丽红, 曹莹, 李强, 等. 中国典型抗生素在环境介质中的污染特征与生态风险评价[J]. 环境科学, 2023, 44(12): 6894-6908.
Chen L H, Cao Y, Li Q, et al. Pollution characteristics and ecological risk assessment of typical antibiotics in environmental media in China[J]. Environmental Science, 2023, 44(12): 6894-6908.
[15] 朱婷婷, 段标标, 宋战锋, 等. 深圳铁岗水库水体中抗生素污染特征分析及生态风险评价[J]. 生态环境学报, 2014, 23(7): 1175-1180.
Zhu T T, Duan B B, Song Z F, et al. Pollution characteristics and ecological risk assessment of antibiotics in Tiegang Reservoir in Shenzhen[J]. Ecology and Environmental Sciences, 2014, 23(7): 1175-1180.
[16] 秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状[J]. 环境化学, 2016, 35(5): 875-883.
Qin L T, Tong L, Liu H, et al. Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment[J]. Environmental Chemistry, 2016, 35(5): 875-883.
[17] 林小如, 李子歆, 孙安琪, 等. 模拟增温对木荷叶际抗生素抗性基因的影响[J]. 中国环境科学, 2023, 43(12): 6689-6699.
Lin X R, Li Z X, Sun A Q, et al. Effect of stimulated warming on phyllosphere antibiotic resistance genes of Schima superba[J]. China Environmental Science, 2023, 43(12): 6689-6699.
[18] Padhye L P, Yao H, Kung'u F T, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant[J]. Water Research, 2014, 51: 266-276.
[19] Wang J L, Zhang C, Xiong L, et al. Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the South-to-North Water Diversion (the Hutuo River, China)[J]. Science of the Total Environment, 2022, 832. DOI:10.1016/j.scitotenv.2022.154779
[20] 于婉柔. 南水北调中线干渠抗生素污染分布特征及环境行为研究[D]. 北京: 北京交通大学, 2021.
Yu W R. Study on the occurrence and environmental behavior of antibiotics in the mid route of the South-to-North Water Transfer Project[D]. Beijing: Beijing Jiaotong University, 2021.
[21] 潘瑞, 刘树枫, 王佳文, 等. 南水北调中线工程水源区抗生素抗性基因多样性研究[J]. 北京大学学报(自然科学版), 2020, 56(3): 500-508.
Pan R, Liu S F, Wang J W, et al. Diversity of antibiotic resistance genes in water source areas of the middle route of the South-to-North Water Transfer Project[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 500-508.
[22] Hou W, Hu F, Sun S H, et al. Occurrence and distribution of antibiotic resistance genes in lakes and reservoirs from water-receiving area of eastern route of the South-to-North Water Diversion Project, northern China[J]. Water Supply, 2020, 20(8): 3029-3037.
[23] 唐梦园, 邱春生, 田丰, 等. 南水北调泵站调节池表层沉积物氮形态分布特征及影响因素[J]. 环境污染与防治, 2022, 44(12): 1657-1662.
Tang M Y, Qiu C S, Tian F, et al. Distribution characteristics and influencing factors of nitrogen forms in surface sediment of the South-to-North Water Transfer Project pumping station regulating reservoir[J]. Environmental Pollution & Control, 2022, 44(12): 1657-1662.
[24] 田丰, 邱春生, 冯涛, 等. 环境因子对南水北调泵站调节池沉积物氮释放特征的影响研究[J]. 环境污染与防治, 2023, 45(5): 620-625.
Tian F, Qiu C S, Feng T, et al. Effects of environmental factors on nitrogen release in the sediment of regulating pond of South-to-North Water Transfer pumping station[J]. Environmental Pollution & Control, 2023, 45(5): 620-625.
[25] 徐慕, 李世豪, 马巾, 等. 上海沙田湖养殖区及周边水体中氟喹诺酮类抗性基因的分布特征及其与环境因子关系[J]. 环境科学, 2021, 42(12): 5848-5856.
Xu M, Li S H, Ma J, et al. Investigation on fluoroquinolone resistance genes in the intensive aquaculture area of Shatianhu intensive aquiculture farm and surrounding waterbodies in Shanghai, China[J]. Environmental Science, 2021, 42(12): 5848-5856.
[26] Di Cesare F. Functional metagenomics for identification of antibiotic resistance genes (ARGs)[A]. In: Mengoni A, Bacci G, Fondi M (Eds.). Bacterial Pangenomics: Methods and Protocols (2nd ed.)[M]. New York, NY: Humana, 2021. 173-183.
[27] Lawson C E, Wu S, Bhattacharjee A S, et al. Metabolic network analysis reveals microbial community interactions in anammox granules[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms15416
[28] Zhang K F, Fan Y T, Chang S, et al. Characterization of antibiotic resistance genes in drinking water sources of the Douhe Reservoir, Tangshan, northern China: the correlation with bacterial communities and environmental factors[J]. Environmental Sciences Europe, 2022, 34(1). DOI:10.1186/s12302-022-00635-x
[29] Jia S Y, Shi P, Hu Q, et al. Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination[J]. Environmental Science & Technology, 2015, 49(20): 12271-12279.
[30] 张泽辉, 宋雪娇, 黄程程, 等. 细菌的获得性耐药机制研究进展[J]. 动物医学进展, 2017, 38(1): 74-77.
Zhang Z H, Song X J, Huang C C, et al. Progress on antimicrobial resistance mediated by changes of target protein in bacteria[J]. Progress in Veterinary Medicine, 2017, 38(1): 74-77.
[31] 邢月, 张雯, 程艳, 等. 西北内陆河抗生素抗性基因赋存特征及其影响因素[J]. 中国环境科学, 2023, 43(6): 3077-3086.
Xing Y, Zhang W, Cheng Y, et al. Distribution characteristics and influencing factors of antibiotic resistance genes in inland rivers of Northwest China[J]. China Environmental Science, 2023, 43(6): 3077-3086.
[32] 张凯, 辛蕊, 李贶家, 等. 华中地区供水水库抗生素抗性基因的季节变化及影响因素[J]. 环境科学, 2021, 42(10): 4753-4760.
Zhang K, Xin R, Li K J, et al. Seasonal variation and influencing factor analysis of antibiotic resistance genes in water supply reservoirs of central China[J]. Environmental Science, 2021, 42(10): 4753-4760.
[33] 秦荣, 喻庆国, 刘振亚, 等. 人类活动影响下的高原湿地四环素类抗生素抗性基因赋存与微生物群落共现性[J]. 环境科学, 2023, 44(1): 169-179.
Qin R, Yu Q G, Liu Z Y, et al. Co-occurrence of tetracycline antibiotic resistance genes and microbial communities in plateau wetlands under the influence of human activities[J]. Environmental Science, 2023, 44(1): 169-179.
[34] Guo X P, Yang Y, Lu D P, et al. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary[J]. Water Research, 2018, 129: 277-286.
[35] 李冰, 王亚, 郑钊, 等. 丹江口水库调水前后表层沉积物营养盐和重金属时空变化[J]. 环境科学, 2018, 39(8): 3591-3600.
Li B, Wang Y, Zheng Z, et al. Temporal and spatial changes in sediment nutrients and heavy metals of the Danjiangkou Reservoir before and after water division of the mid-route project[J]. Environmental Science, 2018, 39(8): 3591-3600.
[36] 胡石磊, 瞿剑里, 章丽, 等. 青海湖周边地区表层土壤重金属含量和抗性基因丰度及相关性[J]. 环境科学, 2023, 44(1): 336-346.
Hu S L, Qu J L, Zhang L, et al. Heavy metal content and resistance gene abundance and related properties in the surface soil around Qinghai lake[J]. Environmental Science, 2023, 44(1): 336-346.
[37] 林倩如, 杨雪倩, 张攀, 等. 东寨港红树林湿地沉积物抗生素抗性基因的分布特征及其影响因素[J]. 安全与环境工程, 2023, 30(4): 221-231.
Lin Q R, Yang X Q, Zhang P, et al. Distribution characteristics of antibiotic resistance genes in mangrove wetland sediments of Dongzhai Port and the influencing factors[J]. Safety and Environmental Engineering, 2023, 30(4): 221-231.
[38] Das N, Kotoky R, Maurya A P, et al. Paradigm shift in antibiotic-resistome of petroleum hydrocarbon contaminated soil[J]. Science of the Total Environment, 2021, 757. DOI:10.1016/j.scitotenv.2020.143777
[39] Nguyen C C, Hugie C N, Kile M L, et al. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: a review[J]. Frontiers of Environmental Science & Engineering, 2019, 13(3). DOI:10.1007/s11783-019-1129-0
[40] Wu Y, Hu W Y, Huang H N, et al. Enzymatic pretreatment mitigates the dissemination of antibiotic resistance genes via regulating microbial populations and gene expressions during food waste fermentation[J]. Chinese Chemical Letters, 2023, 34(8). DOI:10.1016/j.cclet.2022.108058
[41] Li S N, Zhang C F, Li F X, et al. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: a critical review[J]. Journal of Hazardous Materials, 2021, 411. DOI:10.1016/j.jhazmat.2021.125148
[42] 王秋水, 刘悦, 邓婕, 等. 动物性水产品及其养殖环境中抗生素抗性基因的研究进展[J]. 食品安全质量检测学报, 2022, 13(5): 1453-1461.
Wang Q S, Liu Y, Deng J, et al. Research progress of antibiotic resistance genes in animal aquatic products and aquaculture environment[J]. Journal of Food Safety and Quality, 2022, 13(5): 1453-1461.
[43] 徐秋鸿, 刘曙光, 娄厦, 等. 长江口近岸地区抗生素抗性基因与微生物群落分布特征[J]. 环境科学, 2023, 44(1): 158-168.
Xu Q H, Liu S G, Lou S, et al. Distributions of antibiotic resistance genes and microbial communities in the nearshore area of the Yangtze River Estuary[J]. Environmental Science, 2023, 44(1): 158-168.
[44] 王龙飞, 程逸群, 胡晓东, 等. 江苏省代表性水源地抗生素及抗性基因赋存现状[J]. 环境科学, 2021, 42(2): 749-760.
Wang L F, Cheng Y Q, Hu X D, et al. Occurrence of antibiotics and antibiotic resistance genes in representative drinking water resources in Jiangsu Province[J]. Environmental Science, 2021, 42(2): 749-760.
[45] 程宏, 陈荣. 九龙江口微塑料与抗生素抗性基因污染的分布特征[J]. 环境科学, 2022, 43(11): 4924-4930.
Cheng H, Chen R. Distribution of microplastic and antibiotic resistance gene pollution in Jiulong River Estuary[J]. Environmental Science, 2022, 43(11): 4924-4930.