环境科学  2024, Vol. 45 Issue (6): 3671-3678   PDF    
聚苯乙烯微塑料对污水中胞外耐药基因的影响及其机制
周帅1,2,3, 黄啊潮2, 黄泽枫2, 李伦福2, 杨锋娟2, 陈安琪2, 修斐晨4, 高媛媛1,3     
1. 南华大学污染控制与资源化技术湖南省高校重点实验室, 衡阳 421001;
2. 南华大学土木工程学院, 衡阳 421001;
3. 南华大学稀有金属矿产开发与废物地质处置技术湖南省重点实验室, 衡阳 421001;
4. 南华大学衡阳医学院病原生物学研究所, 衡阳 421001
摘要: 微塑料(MPs)和抗生素耐药基因(ARGs)是共存于污水处理厂中的典型新污染物. MPs已被证明能够改变污泥中ARGs的分布模式, 但其对污水中胞外ARGs(feARGs)的影响及机制仍不清楚. 采用荧光定量PCR技术探究了典型MPs(聚苯乙烯PS)暴露60 d后污水中feARGs(包括tetCtetOsul1sul2)的动态变化特征及机制. 结果表明, 四环素类feARGs绝对丰度在nm级和mm级PS暴露下分别降低了28.4% ~ 76.0%和35.2% ~ 96.2%, 在μm级PS暴露下变化了-55.4% ~ 122.4%. PS对磺胺类sul1的促进效果呈nm级 > μm级 > mm级趋势, 且ρ(PS)为50 mg·L-1sul1丰度扰动幅度更大. 磺胺类sul2的相对丰度在μm级和mm级PS暴露后分别削减了25.4% ~ 42.6%和46.1% ~ 90.3%, 在nm级PS暴露后增加了1.9 ~ 3.9倍;ρ(PS)为50 mg·L-1sul2的削减作用高于ρ(PS)为0.5 mg·L-1. Pearson相关性分析显示, PS暴露下feARGs相对丰度与细胞膜通透性和典型可移动遗传元件(intI1)丰度成正相关, 与活性氧水平成负相关. 研究结果阐明了PS对污水中feARGs的影响及其机制, 可为污水中MPs与ARGs复合污染的防治提供科学依据.
关键词: 微塑料(MPs)      聚苯乙烯(PS)      胞外耐药基因(feARGs)      污水      影响机制     
Effects and Mechanisms of Polystyrene Microplastics on Extracellular Antibiotic Resistance Genes in Wastewater
ZHOU Shuai1,2,3 , HUANG A-chao2 , HUANG Ze-feng2 , LI Lun-fu2 , YANG Feng-juan2 , CHEN An-qi2 , XIU Fei-chen4 , GAO Yuan-yuan1,3     
1. Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China;
2. School of Civil Engineering, University of South China, Hengyang 421001, China;
3. Hunan Province Key Laboratory of Rare Metal Mineral Exploitation and Geological Disposal of Wastes, Hengyang 421001, China;
4. Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
Abstract: Microplastics (MPs) and antibiotic resistance genes (ARGs) are typical co-existing emerging pollutants in wastewater treatment plants. MPs have been shown to alter the distribution pattern of ARGs in sludge, but their effects on free extracellular ARGs (feARGs) in wastewater remain unclear. In this study, we used fluorescence quantitative PCR to investigate the dynamics of feARGs (including tetC, tetO, sul1, and sul2) in wastewater and their transition mechanisms after 60 d of exposure to typical MPs (polystyrene, PS). The results showed that the absolute abundance of tetracycline feARGs decreased by 28.4%-76.0% and 35.2%-96.2%, respectively, under nm-level and mm-level PS exposure and changed by -55.4%-122.4% under μm-level PS exposure. The abundance of sul1 showed a trend of nm-level > μm-level > mm-level upon PS exposure, and the changes in sul1 abundance was greater with ρ(PS) = 50 mg·L-1 exposure. The relative abundance of sul2 was reduced by 25.4%-42.6% and 46.1%-90.3% after μm-level and mm-level PS exposure, respectively, and increased by 1.9-3.9 times after nm-level PS exposure, and the sul2 showed a higher reduction at ρ (PS) = 50 mg·L-1 exposure than that at ρ (PS) = 0.5 mg·L-1. The Pearson correlation analysis showed that the relative abundance of feARGs during PS exposure was positively correlated with cell membrane permeability and typical mobile genetic elements (intI1) abundance and negatively correlated with reactive oxygen species level. Our findings elucidated the effects and corresponding mechanisms of PS on the growth and mobility of feARGs in wastewater, providing a scientific basis for the control of the combined MPs and ARGs pollution in wastewater.
Key words: microplastics (MPs)      polystyrene (PS)      free extracellular antibiotic resistance genes (feARGs)      wastewater      influencing mechanism     

抗生素耐药性(AMR)对全球人类健康的威胁日益严峻[1]. 世界卫生组织最新报告表明, 每年有70万人因耐药细菌感染死亡, 且截至2050年死亡人数可能会超过100万人·a年-1[2]. 作为AMR的载体, 耐药基因(antibiotic resistance genes, ARGs)被视作一种新兴环境污染物[3, 4]. 污水处理厂是ARGs的重要环境储存库[5~7], 但现有污水处理工艺无法彻底去除污泥和污水中全部ARGs[5, 8]. 在污水中, 以游离态胞外DNA(free extracellular DNA, feDNA)形式存在的胞外耐药基因(free extracellular ARGs, feARGs)可持久存在, 且在适宜条件下可通过转化作用重新进入敏感受体细菌[9, 10]. 因此, 揭示feARGs在污水中的动态特征对于控制水体环境AMR传播至关重要.

近年来, 污水处理厂被证明是新兴环境污染——微塑料(microplastics, MPs)的关键“汇”与“源”[11~14].研究者已在污水处理厂进水中检出MPs 1 ~ 7 000个·L-1[14]. MPs会通过诱导污泥中微生物生理学反应影响ARGs的增殖与传播能力[15~17]. 例如, 聚乙烯和聚氯乙烯MPs暴露125 d导致污泥中ARGs丰度增加了5.7% ~ 123.4%[18]. 此外, MPs还会通过诱导活性氧(ROS)产生、增加细胞膜通透性以及富集可移动遗传元件(MGEs, 如intI1)等机制影响ARGs的水平传播[17~20]. 然而, 上述研究多聚焦于污泥胞内ARGs的变化, MPs对污水中feARGs动态消长规律的影响至今尚不明晰.

本研究采用序批式反应器(SBR)考察了不同浓度与粒径聚苯乙烯微塑料(polystyrene, PS)暴露下污水中典型四环素类(tetCtetO)与磺胺类(sul1sul2)feARGs的动态特征, 通过分析PS暴露下ROS、细胞膜通透性、MGEs和外排泵基因等典型驱动因子揭示了MPs影响feARGs增殖与传播的潜在机制, 以期为污水中ARGs与MPs复合污染风险的评估和控制提供依据.

1 材料与方法 1.1 污泥采集与处理

活性污泥取自衡阳市某规模为15 000 ~ 20 000 m3·d-1的污水处理厂, 污泥浓度约为5 500 mg·L-1. 活性污泥采用SBR进行驯化. SBR每天运行两个周期, 每个周期12 h, 即缺氧4 h、好氧7 h、沉淀0.5 h和静置排水0.5 h. 待出水化学需氧量和氨氮等水质参数保持稳定后, 将污泥转移至子SBR中进行PS暴露实验.

1.2 PS暴露实验

向装有2.2 L污泥的子SBR中投加PS, 开展为期60 d的暴露实验. 污泥中ARGs的增殖与传播通常与PS粒径和浓度有关[16, 19, 21]. PS粒径设置如下:nm级(100 nm)、μm级(100 μm)和mm级(1 mm)[21~23]. PS实验浓度为其代表性环境浓度(0.5 mg·L-1[24]和特定环境胁迫浓度(50 mg·L-1[21, 25]. 同时, 设置空白对照组(0 mg·L-1 PS). 实验组和对照组均设置2个平行. 分别于1、3、7、14、21、28、45和60 d收集污泥混合液样品. 离心(8 000 r·min-1, 1 min)后, 将污泥和污水于-60 ℃保存.

1.3 feDNA的提取与纯化

取5 mL污水样品, 采用乙醇-乙酸铵沉淀法[26]获得feDNA粗提取液. 接着采用苯酚-氯仿法[27]纯化feDNA粗提取液. 利用多功能酶标仪(BioTek, 美国)和PicoGreen dsDNA Quantitation Kit(Invitrogen, 中国)测定feDNA的浓度及纯度. 纯feDNA需满足A260/A280为1.8 ~ 2.0, A260/A230 > 2.0. 最后, 将纯化的feDNA于-20 ℃保存.

1.4 RNA的提取与反转录

利用RNAprep纯细菌/细胞试剂盒(天根生化科技有限公司, 中国), 按照其操作说明提取污泥样品中细菌的RNA. 使用微量核酸蛋白分析仪(Nanodrop2000, 美国)检测RNA的浓度和纯度. 然后, 使用PrimeScript RT试剂盒(Takara, 中国)对RNA进行反转录以产生互补DNA(cDNA). 最后, 将cDNA于-20 ℃保存, 用于检测典型外排泵基因(acrA)的表达水平.

1.5 荧光定量PCR测试

采用SuperReal PreMix(Probe)试剂盒定量分析污水处理厂中常见的4类feARGs(sul1sul2tetCtetO[28~30]、典型MGEs(intI1[29, 30]、16S rRNA[29, 30]acrA[31, 32]. 目标基因引物序列参见文献[30~33]. 荧光定量PCR测试采用20 μL扩增体系, 即SuperReal PreMix Plus 10 μL、正反引物(10 μmol·L-1)各0.6 μL、模板DNA(1 ng·μL-1)2 μL以及无菌无酶水6.8 μL. 热循环程序为:95 ℃变性30秒, 退火30秒, 72 ℃延伸30秒;共计40个循环. 将携带特定基因的质粒连续稀释10倍制作标准曲线, 所得相关基因标准曲线R2 > 0.997. 所有样品一式三份. feARGs丰度计算公式参见文献[34].

1.6 ROS与细胞膜通透性检测

使用2', 7'-二氯荧光素二乙酸酯荧光探针(Invitrogen, 美国)测定活性污泥细胞中ROS含量[35]. 采用多功能酶标仪(BioTek, 美国)于488 nm激发波长、525 nm发射波长下测量样品荧光值. ROS浓度为样品荧光值与空白对照组荧光值的百分比值. 活性污泥中细菌细胞膜通透性通过LIVE/DEAD BacLight Bacterial Viability Kits(Invitrogen, 美国)进行检测. 使用多功能酶标仪, 在激发波长485 nm、发射波长530 nm(绿光特征发射波长)和630 nm(红光特征发射波长)下测定样品荧光值, 分别记为FgFr. 以活细菌比例为横坐标, 对应的荧光比值Fg /Fr为纵坐标, 绘制标准曲线. 样品中活细菌比例按以下公式计算:

式中, a为标准曲线的斜率;b为标准曲线的截距. 为了定性分析PS暴露下细胞形态的变化, 将污泥细胞(PS暴露14 d)固定在2.5%戊二醛溶液中, 通过透射电子显微镜(TEM)(日立H-7650, 日本)进行观察.

1.7 数据分析

采用Microsoft Excel软件进行数据处理. 利用SPSS 22.0进行Pearson相关性分析. 其中, P < 0.05为显著相关, P < 0.01为极显著相关. 通过R 3.2.3和Origin 20.0作图.

2 结果与讨论 2.1 PS对污水中feARGs分布的影响 2.1.1 PS对四环素类feARGs分布的影响

本研究首先考察了不同粒径和浓度PS对feARGs分布的影响. 如图 1所示, 四环素类feARGs丰度水平在PS暴露1 ~ 3 d下降;3 ~ 21 d持续增长, 至第21 d达到峰值(绝对丰度:3.7 × 106 copies·mL-1);21 ~ 45 d期间逐渐降低, 并于45 d后保持稳定. 这说明四环素类feARGs丰度在PS暴露期间呈波动状态. 与对照组相比, 四环素类feARGs的绝对丰度在nm级和mm级PS暴露60 d后分别下降了28.4% ~ 76.0%和35.2% ~ 96.2%, 而在μm级PS暴露组中变化了-55.4% ~ 122.4%(图 1). 这表明nm级和mm级PS会削减四环素类feARGs, 而μm级PS对四环素类feARGs的影响与PS浓度有关. 进一步对比发现, 60 d后50 mg·L-1 nm级PS暴露组中四环素类feARGs的绝对丰度为0.5 mg·L-1 nm级PS暴露组的33.5% ~ 79.5% [图 1(a)]. 相反, 在50 mg·L-1 mm级PS暴露后四环素类feARGs的绝对丰度为其在0.5 mg·L-1 mm级PS暴露组的1.6 ~ 16.9倍[图 1(c)]. 因此, PS暴露对四环素类feARGs的影响取决于PS浓度和粒径.

柱状图对应绝对丰度, 点状图对应相对丰度 图 1 PS暴露下四环素类feARGs(tetCtetO)的丰度 Fig. 1 Abundance of tetracycline feARGs (tetC and tetO) under PS exposure

2.1.2 PS对磺胺类feARGs分布的影响

PS暴露60 d后, sul1的绝对丰度较对照组增加了0.2 ~ 4.9倍(图 2). PS暴露对sul1的富集效果呈nm级 > μm级 > mm级趋势. 此外, 0.5 mg·L-1和50 mg·L-1 PS暴露60 d后sul1的绝对丰度分别高于对照组1.0 ~ 2.0倍和0.2 ~ 4.9倍(图 2). 这说明, 与0.5 mg·L-1 PS相比, 50 mg·L-1 PS暴露对sul1丰度水平的扰动幅度更大. 再者, 60 d后对照组中sul1绝对丰度比第1 d降低了90.1%, 而PS暴露60 d后sul1绝对丰度较第1 d降低了33.6% ~ 75.6%. 这说明PS暴露可能会诱导污泥中ARGs释放至污水[36].

柱状图对应绝对丰度, 散点对应相对丰度 图 2 PS暴露下磺胺类feARGs(sul1sul2)的丰度 Fig. 2 Abundance of sulfonamide feARGs (sul1 and sul2) under PS exposure

与对照组相比, nm级、μm级和mm级PS暴露60 d后sul2的相对丰度分别变化了185.5% ~ 386.4%、-42.6% ~ -25.4%和-90.3% ~ -46.1%(图 2). 这说明nm级PS暴露明显促进了sul2增殖, 但μm级和mm级PS对sul2存在削减作用, 且mm级PS对sul2的削减效果优于μm级PS. 此外, 50 mg·L-1 mm级PS暴露60 d后sul2的绝对丰度削减量比0.5 mg·L-1 mm级PS暴露高33.0%(图 2). 这可能是由于高浓度MPs对feARGs的吸附能力较强[15]. 与sul1类似, sul2的绝对丰度在PS暴露期间呈升-降-升的波动趋势. 值得注意的是, 对照组中sul2在60 d后的绝对丰度为第1 d的17.7倍;而PS暴露60 d后, sul2的绝对丰度为第1 d的6.3 ~ 237.1倍. 这说明PS暴露会刺激sul2的增殖.

2.2 PS暴露下污水中feARGs的动态转变机制 2.2.1 PS暴露对ROS与细胞膜通透性的影响

不同粒径和浓度PS暴露对细胞内ROS水平的影响如图 3(a)所示. 在nm级、μm级和mm级PS暴露60 d后, ROS产生量较对照组分别增加了15.5% ~ 77.0%、33.1% ~ 33.3%和21.5% ~ 24.5%. 这表明nm级PS暴露下ROS浓度波动幅度最大, 而μm级PS对ROS的影响高于mm级PS. 此外, 0.5 mg·L-1 PS(除mm级)暴露14 d后ROS水平为50 mg·L-1 PS暴露组的78.3% ~ 83.1%;且0.5 mg·L-1和50 mg·L-1 PS暴露60 d后ROS含量较对照组分别增加了15.5% ~ 33.1%和21.5% ~ 77.0%. 与0.5 mg·L-1 PS相比, 50 mg·L-1 PS暴露更有利于促进细胞内ROS产生. 这可能是因为高浓度MPs暴露下细胞产ROS能力与抗氧化能力之间的平衡被破坏[37, 38], 继而导致细胞产生更多ROS. 值得注意的是, ROS水平在PS暴露第14 d最高(为对照组的1.6 ~ 2.2倍), 14 d后急剧下降. 与此同时, PS暴露后sul1绝对丰度也在14 d达到峰值(3.7 × 107 ~ 4.6 × 107 copies·mL-1)后急剧下降1 ~ 2个数量级(图 2). 因此, PS暴露可能会通过诱导细胞产生ROS改变sul1水平.

(a)ROS变化倍数, (b)活细胞比例变化倍数, (c)细胞TEM图(c1)0.5 mg·L-1 nm级, (c2)0.5 mg·L-1 µm级, (c3)0.5 mg·L-1 mm级, (c4)50 mg·L-1 nm级, (c5)50 mg·L-1 µm级, (c6)50 mg·L-1 mm级 图 3 PS暴露下ROS与细胞膜通透性的变化 Fig. 3 Changes in ROS and cell membrane permeability under PS exposure

不同粒径和浓度PS暴露下污泥细菌的细胞膜通透性变化如图 3(b)所示. 与对照组相比, 0.5 mg·L-1 nm级、μm级和mm级PS暴露60 d后细菌活细胞比例分别减少18.5%、14.6%和14.3%;而50 mg·L-1 nm级、μm级和mm级PS暴露60 d后细菌活细胞比例分别降低41.6%、38.0%和23.4%. 这说明50 mg·L-1 PS较0.5 mg·L-1 PS暴露更有利于增加细胞膜通透性. 类似地, Mrakovcic等[39]研究发现20 μg·mL-1和50 μg·mL-1 PS暴露24 h后未对细胞产生毒性, 但200 μg·mL-1 PS使活细胞比例降低至初始水平的12%. 进一步对比发现, nm级PS暴露下活细胞比例降幅高于μm级和mm级PS暴露组. 这可能是因为粒径较小的nm级塑料可以进入细胞, 并通过诱导细胞膜孔的形成增加细胞膜通透性[16, 40]. 此外, 在PS暴露过程中, 细菌细胞膜通透性先升后降[图 3(b)], 这与sul1丰度的变化趋势一致. 例如, 第14 d细胞膜通透性增加[图3(b)3(c)], 同时sul1丰度也明显升高(图 2). 再者, PS暴露下ROS含量[图 3(a)]与细胞膜通透性[图 3(b)]也呈现相似的变化趋势. 综上可知, PS暴露可能会通过促进细胞内ROS过量产生增加细胞膜通透性[41, 42], 最终刺激污水中sul1增殖.

2.2.2 PS暴露对intI1丰度和acrA表达水平的影响

不同粒径和浓度PS暴露对游离态胞外可移动性intI1的影响如图4(a)~4(c)所示. PS暴露60 d后intI1的绝对丰度和相对丰度分别为对照组的13.0% ~ 35.7 %和13.5% ~ 89.6%. PS暴露对污水中intI1的削减效果呈mm级 > µm级 > nm级规律. 此外, 在0.5 mg·L-1 nm级和mm级PS暴露60 d后, intI1的绝对丰度分别比同粒径50 mg·L-1 PS暴露组低24.0%和45.7%;而0.5 mg·L-1 μm级PS暴露60 d后, intI1的绝对丰度较50 mg·L-1 μm级PS暴露组高51.2%. 这说明PS对污水中intI1的抑制效果与PS浓度有关[43]. 值得注意的是, PS暴露下intI1绝对丰度整体上先增后减[图4(a)~4(c)], 这与PS暴露下四环素类feARGs的丰度变化规律相似(图 1). 因此, PS暴露可能通过削减污水中intI1丰度降低四环素类feARGs水平.

柱状图对应绝对丰度, 点状图对应相对丰度 图 4 PS暴露下游离态胞外intI1丰度和acrA表达水平 Fig. 4 Abundance of free extracellular intI1 and acrA expression under PS exposure

外排泵可以通过将有毒化学物质排出细胞避免细胞损伤, 这被视为细菌对抗生素产生耐药性的重要途径[44, 45]. 因此, 本研究考察了不同粒径和浓度PS暴露下典型外排泵基因(acrA)的丰度变化情况[图 4(d)]. 在nm级、µm级和mm级PS暴露60 d后acrA的丰度较对照组分别降低了4.5% ~ 60.4%、18.5% ~ 53.0%和64.4% ~ 74.1%. 这说明mm级PS暴露较nm级和µm级PS更有利于削减acrA. 进一步对比发现, 50 mg·L-1 nm级和μm级PS暴露60 d后acrA的丰度较对照组的削减比例分别为0.5 mg·L-1 nm级和μm级PS暴露组的7.4%和34.9%. 这表明, 与50 mg·L-1 PS相比, 0.5 mg·L-1的PS暴露可能较易削减intI1丰度和acrA表达水平. 同时, acrAtetC的丰度在PS暴露21 ~ 28 d均显著下降(acrA:99.0% ~ 99.8%;tetC:20.3% ~ 54.4%), 且21 d时均有所增加(acrA:对照组的2.8 ~ 16.2倍;tetC:对照组的1.3 ~ 1.7倍), 第28 d均被削减(acrA:22.9% ~ 50.5%;tetC:6.1% ~ 37.5%)[图 4(d)图 1]. 这说明PS暴露下tetC的丰度变化可能受acrA调控.

2.3 PS影响污水中feARGs的关键机制

为了明确PS暴露下feARGs的关键转变机制, 本研究采用Pearson相关分析探究了ROS、细胞膜通透性、游离态胞外intI1acrA水平变化对feARGs的潜在影响(图 5). PS暴露下, ROS含量与tetOsul1相对丰度显著负相关(tetOr = -0.41, P < 0.05;sul1r = -0.51, P < 0.01). 因此, PS可能通过诱导ROS产生从而抑制feARGs增殖. 此外, 在PS暴露过程中, 细胞膜通透性水平与tetOsul1相对丰度存在显著正相关(tetOr = 0.38, P < 0.05;sul1r = 0.42, P < 0.05), 说明PS可能通过增加细胞膜通透性促进feARGs增殖. PS暴露下游离态胞外intI1tetCr = 0.86, P < 0.01)、tetOr = 0.75, P < 0.01)和sul1r = 0.90, P < 0.01)均成极显著正相关, 表明PS暴露主要通过游离态intI1改变feARGs相对丰度.

图 5 PS暴露下ROS、细胞膜通透性、游离态胞外intI1acrA与feARGs的相关性 Fig. 5 Correlation of ROS, cell membrane permeability, free extracellular intI1, and acrA with feARGs under PS exposure

3 结论

(1)nm级和mm级PS暴露会削减污水中四环素类feARGs, 而μm级PS暴露对四环素类feARGs的影响取决于PS浓度.

(2)PS暴露对磺胺类sul1的促进效果呈nm级 > μm级 > mm级趋势, 且ρ(PS)为50 mg·L-1ρ(PS)为0.5 mg·L-1暴露对sul1表达水平的扰动幅度更大. nm级PS暴露会促进sul2增殖;μm级和mm级PS暴露则削减了sul2丰度, 且ρ(PS)为50 mg·L-1sul2的削减作用优于ρ(PS)为0.5 mg·L-1.

(3)nm级PS有利于促进细胞内ROS产生与增加细胞膜通透性, 而mm级PS和ρ(PS)为0.5 mg·L-1较易削减intI1的丰度和降低acrA的表达. PS暴露下feARGs相对丰度与细胞膜通透性和intI1丰度成正相关, 与ROS水平成负相关.

参考文献
[1] Murray C J L, Ikuta K S, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. The Lancet, 2022, 399(10325): 629-655. DOI:10.1016/S0140-6736(21)02724-0
[2] World Health Organization. High-Level interactive dialogue on antimicrobial resistance[EB/OL]. World Health Organization, https://www.who.int/news/item/30-07-2021-call-to-action-on-antimicrobial-resistance-2021, 2023-08-11.
[3] Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450.
[4] Sanderson H, Fricker C, Brown R S, et al. Antibiotic resistance genes as an emerging environmental contaminant[J]. Environmental Reviews, 2016, 24(2): 205-218. DOI:10.1139/er-2015-0069
[5] Raza S, Shin H, Hur H G, et al. Higher abundance of core antimicrobial resistant genes in effluent from wastewater treatment plants[J]. Water Research, 2022, 208. DOI:10.1016/j.watres.2021.117882
[6] Xu J, Xu Y, Wang H M, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere, 2015, 119: 1379-1385. DOI:10.1016/j.chemosphere.2014.02.040
[7] 梁张岐, 李国鸿, 黄雅梦, 等. 城市污水生物处理过程中结合型和游离型胞外抗生素抗性基因的产生特征[J]. 生态毒理学报, 2021, 16(5): 70-78.
Liang Z Q, Li G H, Huang Y M, et al. Generation of absorbed and free extracellular antibiotic resistance genes during biological treatment processes of municipal wastewater[J]. Asian Journal of Ecotoxicology, 2021, 16(5): 70-78.
[8] Pazda M, Kumirska J, Stepnowski P, et al. Antibiotic resistance genes identified in wastewater treatment plant systems–a review[J]. Science of the Total Environment, 2019, 697. DOI:10.1016/j.scitotenv.2019.134023
[9] Dong H, Chen Y L, Wang J, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123961
[10] Zhang Y, Li A L, Dai T J, et al. Cell-free DNA: a neglected source for antibiotic resistance genes spreading from WWTPs[J]. Environmental Science & Technology, 2018, 52(1): 248-257.
[11] Carr S A, Liu J, Tesoro A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91: 174-182. DOI:10.1016/j.watres.2016.01.002
[12] Woodward J, Li J W, Rothwell J, et al. Acute riverine microplastic contamination due to avoidable releases of untreated wastewater[J]. Nature Sustainability, 2021, 4(9): 793-802. DOI:10.1038/s41893-021-00718-2
[13] 贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9): 4105-4112.
Jia Q L, Chen H, Zhao X, et al. Removal of microplastics by different treatment processes in Shanghai large municipal wastewater treatment plants[J]. Environmental Science, 2019, 40(9): 4105-4112.
[14] Hamidian A H, Ozumchelouei E J, Feizi F, et al. A review on the characteristics of microplastics in wastewater treatment plants: a source for toxic chemicals[J]. Journal of Cleaner Production, 2021, 295. DOI:10.1016/j.jclepro.2021.126480
[15] Cheng Y, Lu J R, Fu S S, et al. Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics[J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118284
[16] Hu X J, Waigi M G, Yang B, et al. Impact of plastic particles on the horizontal transfer of antibiotic resistance genes to bacterium: dependent on particle sizes and antibiotic resistance gene vector replication capacities[J]. Environmental Science & Technology, 2022, 56(21): 14948-14959.
[17] Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs[J]. Science of the Total Environment, 2022, 804. DOI:10.1016/j.scitotenv.2021.150141
[18] Luo T Y, Dai X H, Chen Z J, et al. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow[J]. Water Research, 2023, 228. DOI:10.1016/j.watres.2022.119356
[19] Zha Y, Li Z W, Zhong Z, et al. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics[J]. Journal of Hazardous Materials, 2022, 431. DOI:10.1016/j.jhazmat.2022.128561
[20] Liu X M, Li Y, Tang J C, et al. Nano-and microplastics aided by extracellular polymeric substances facilitate the conjugative transfer of antibiotic resistance genes in bacteria[J]. ACS ES&T Water, 2022, 2(12): 2528-2537.
[21] Zhou C S, Wu J W, Liu B F, et al. (Micro) nanoplastics promote the risk of antibiotic resistance gene propagation in biological phosphorus removal system[J]. Journal of Hazardous Materials, 2022, 431. DOI:10.1016/j.jhazmat.2022.128547
[22] 汪文玲, 龙邹霞, 余兴光, 等. 厦门市筼筜污水处理厂中微塑料的特征研究[J]. 海洋环境科学, 2019, 38(2): 205-210.
Wang W L, Long Z X, Yu X G, et al. Microplastics characteristic in Yundang wastewater treatment Plant of Xiamen[J]. Chinese Journal of Marine Environmental Science, 2019, 38(2): 205-210.
[23] Kumar M, Chen H Y, Sarsaiya S, et al. Current research trends on micro-and nano-plastics as an emerging threat to global environment: a review[J]. Journal of Hazardous Materials, 2021, 409. DOI:10.1016/j.jhazmat.2020.124967
[24] Sun J, Dai X H, Wang Q L, et al. Microplastics in wastewater treatment plants: detection, occurrence and removal[J]. Water Research, 2019, 152: 21-37. DOI:10.1016/j.watres.2018.12.050
[25] Karimi Estahbanati M R, Kiendrebeogo M, Khosravanipour Mostafazadeh A, et al. Treatment processes for microplastics and nanoplastics in waters: State-of-the-art review[J]. Marine Pollution Bulletin, 2021, 168. DOI:10.1016/j.marpolbul.2021.112374
[26] Green M R, Sambrook J. Precipitation of DNA with ethanol[J]. Cold Spring Harbor Protocols, 2016, 2016(12). DOI:10.1101/pdb.prot093377
[27] Corinaldesi C, Danovaro R, Dell'Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments[J]. Applied and Environmental Microbiology, 2005, 71(1): 46-50. DOI:10.1128/AEM.71.1.46-50.2005
[28] Shi J H, Dang Q L, Zhang C Y, et al. Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: interactions of digestion performance, microbial communities and antibiotic resistance genes[J]. Environmental Pollution, 2022, 310. DOI:10.1016/j.envpol.2022.119859
[29] 黄福义, 李虎, 安新丽, 等. 城市生活污水和生活垃圾渗滤液抗生素抗性基因污染的比较研究[J]. 环境科学, 2016, 37(10): 3949-3954.
Huang F Y, Li H, An X L, et al. Comparative investigation of antibotic resistance genes between wastewater and landfill Leachate[J]. Environmental Science, 2016, 37(10): 3949-3954.
[30] Tang Z P, Zhang Y, Zhang S Q, et al. Temporal dynamics of antibiotic resistant bacteria and antibiotic resistance genes in activated sludge upon exposure to starvation[J]. Science of the Total Environment, 2022, 840. DOI:10.1016/j.scitotenv.2022.156594
[31] Chen B, Hao L J, Guo X Y, et al. Prevalence of antibiotic resistance genes of wastewater and surface water in livestock farms of Jiangsu Province, China[J]. Environmental Science and Pollution Research, 2015, 22(18): 13950-13959. DOI:10.1007/s11356-015-4636-y
[32] Nolivos S, Cayron J, Dedieu A, et al. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer[J]. Science, 2019, 364(6442): 778-782. DOI:10.1126/science.aav6390
[33] Pei R T, Kim S C, Carlson K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water Research, 2006, 40(12): 2427-2435. DOI:10.1016/j.watres.2006.04.017
[34] 唐振平, 肖莎莎, 段毅, 等. 石化废水处理厂中耐药菌和耐药基因的分布特征与去除效能解析[J]. 环境科学, 2021, 42(7): 3375-3384.
Tang Z P, Xiao S S, Duan Y, et al. Distribution and removal of antibiotic-resistant bacteria and antibiotic resistance genes in petrochemical wastewater treatment plants[J]. Environmental Science, 2021, 42(7): 3375-3384.
[35] Yuan Q B, He Y, Mao B Y, et al. Nano-metal oxides naturally attenuate antibiotic resistance in wastewater: killing antibiotic resistant bacteria by dissolution and decreasing antibiotic tolerance by attachment[J]. NanoImpact, 2020, 18. DOI:10.1016/j.impact.2020.100225
[36] 吴文斌, 付树森, 毛步云, 等. 微塑料对城市污水中胞内和胞外抗性基因的富集特征研究[J]. 环境科学研究, 2021, 34(6): 1434-1440.
Wu W B, Fu S S, Mao B Y, et al. Enrichment of intracellular and extracellular antibiotic resistance genes by microplastics in municipal wastewater[J]. Research of Environmental Sciences, 2021, 34(6): 1434-1440.
[37] Magara G, Khan F R, Pinti M, et al. Effects of combined exposures of fluoranthene and polyethylene or polyhydroxybutyrate microplastics on oxidative stress biomarkers in the blue mussel (Mytilus edulis)[J]. Journal of Toxicology and Environmental Health, Part A, 2019, 82(10): 616-625. DOI:10.1080/15287394.2019.1633451
[38] Trestrail C, Nugegoda D, Shimeta J. Invertebrate responses to microplastic ingestion: reviewing the role of the antioxidant system[J]. Science of the Total Environment, 2020, 734. DOI:10.1016/j.scitotenv.2020.138559
[39] Mrakovcic M, Meindl C, Roblegg E, et al. Reaction of monocytes to polystyrene and silica nanoparticles in short-term and long-term exposures[J]. Toxicology Research, 2014, 3(2): 86-97. DOI:10.1039/c3tx50112d
[40] Huang Y W, Cambre M, Lee H J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms[J]. International Journal of Molecular Sciences, 2017, 18(12). DOI:10.3390/ijms18122702
[41] Azizi S M M, Zakaria B S, Haffiez N, et al. Granular activated carbon remediates antibiotic resistance propagation and methanogenic inhibition induced by polystyrene nanoplastics in sludge anaerobic digestion[J]. Bioresource Technology, 2023, 377. DOI:10.1016/j.biortech.2023.128938
[42] Shi J H, Wu D, Su Y L, et al. (Nano) microplastics promote the propagation of antibiotic resistance genes in landfill leachate[J]. Environmental Science: Nano, 2020, 7(11): 3536-3546. DOI:10.1039/D0EN00511H
[43] Eckert E M, Di Cesare A, Kettner M T, et al. Microplastics increase impact of treated wastewater on freshwater microbial community[J]. Environmental Pollution, 2018, 234: 495-502.
[44] Tang Z P, Zhang Y, Xiao S S, et al. Insight into the impacts and mechanisms of ketone stress on the antibiotic resistance in Escherichia coli [J]. Environmental Science and Pollution Research, 2022, 29(55): 83746-83755.
[45] Li Z H, Yuan L, Wang L, et al. Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127088