环境科学  2021, Vol. 42 Issue (7): 3375-3384   PDF    
石化废水处理厂中耐药菌和耐药基因的分布特征与去除效能解析
唐振平1,2, 肖莎莎3, 段毅1,3, 刘迎九1,3, 高媛媛3, 吴月月4, 陈怡雯4, 周帅1,3     
1. 南华大学污染控制与资源化技术湖南省高校重点实验室, 衡阳 421001;
2. 南华大学稀有金属矿产开发与废物地质处置技术湖南省重点实验室, 衡阳 421001;
3. 南华大学土木工程学院, 衡阳 421001;
4. 南华大学衡阳医学院病原生物学研究所, 衡阳 421001
摘要: 抗生素耐药性污染已成为全球新兴环境问题之一.本研究选取某座石化废水处理厂,对耐药菌(ARB)和3种形态耐药基因(ARGs):细胞内耐药基因(iARGs)、细胞外附着态耐药基因(aeARGs)和游离态耐药基因(feARGs)的分布特征与去除效能开展研究.结果表明,废水处理厂中检出四环素、磺胺和氨苄西林这3类ARB,其绝对浓度为8.45×102~2.38×105 CFU·mL-1.厌氧处理可使这3类ARB绝对浓度下降0.04 lg~0.21 lg;曝气和沉淀处理对ARB的影响因其类型而异;出水ARB绝对浓度高出进水水平0.12 lg~0.63 lg.活性污泥中aeARGs和iARGs绝对丰度分别为1.96×107~3.02×1010 copies·g-1和5.22×107~4.15×1010 copies·g-1;而废水中feARGs绝对丰度为5.90×108~1.01×1012 copies·L-1.厌氧处理可去除0.13 lg~0.65 lg aeARGs和0.04 lg~0.28 lg iARGs;曝气和沉淀处理对aeARGs和iARGs的去除效果受ARGs类型和形态影响;出水中feARGs绝对丰度较进水升高0.06 lg~0.81 lg.冗余分析表明,ARB浓度与COD、Cl-和总氮浓度显著正相关(P < 0.05);aeARGs丰度与COD和总氮浓度显著正相关(P < 0.05);iARGs和feARGs丰度均与重金属浓度显著正相关(P < 0.05).本研究证实了石化废水处理厂具有ARB和不同形态ARGs的富集风险,并为特种工业废水耐药性污染研究与防治提供理论基础.
关键词: 石化废水      耐药菌(ARB)      耐药基因(ARGs)      分布      去除      影响因子     
Distribution and Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes in Petrochemical Wastewater Treatment Plants
TANG Zhen-ping1,2 , XIAO Sha-sha3 , DUAN Yi1,3 , LIU Yin-jiu1,3 , GAO Yuan-yuan3 , WU Yue-yue4 , CHEN Yi-wen4 , ZHOU Shuai1,3     
1. Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China;
2. Hunan Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, Hengyang 421001, China;
3. School of Civil Engineering, University of South China, Hengyang 421001, China;
4. Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
Abstract: A petrochemical wastewater treatment plant (PWWTP) was selected to investigate the distribution and removal of antibiotic-resistant bacteria (ARB) and three forms of antibiotic resistance genes (ARGs), namely intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). Tetracycline, sulfanilamide, and ampicillin ARB were detected with the total absolute concentration of 8.45×102-2.38×105 CFU·mL-1; the absolute concentrations of three types of ARB decreased by 0.04 lg-0.21 lg through anaerobic treatment. The effect of aeration and precipitation treatment on ARB varies with its type, and the absolute concentration of ARB in effluent was 0.12 lg-0.63 lg higher than that in influent. The absolute abundance of aeARGs and iARGs in activated sludge was 1.96×107-3.02×1010 copies·g-1 and 5.22×107-4.15×1010 copies·g-1, respectively; the absolute abundance of feARGs in wastewater was 5.90×108-1.01×1012 copies·L-1. Anaerobic treatment can remove 0.13 lg-0.65 lg aeARGs and 0.04 lg-0.28 lg iARGs, while the removal efficiency of aeARGs and iARGs by aeration and precipitation process was affected by ARGs types and forms. The absolute abundance of feARGs in effluent is 0.06 lg-0.81 lg higher than that in influent. Redundancy analysis showed that the concentration of ARB was significantly positively correlated with chemical oxygen demand (COD), Cl-, and total nitrogen concentration (P < 0.05). The abundance of aeARGs was positively correlated with COD and total nitrogen concentration (P < 0.05), and both the abundance of iARGs and feARGs are positively correlated with heavy metals concentration (P < 0.05). This study confirmed the enrichment risk of ARB and different forms of ARGs in PWWTPs, which provided references for the research and prevention of antibiotic resistance pollution in industrial wastewater.
Key words: petrochemical wastewater      antibiotic-resistant bacteria(ARB)      antibiotic resistance genes(ARGs)      distribution      removal      influencing factor     

环境中抗生素耐药性污染已被明确列为公众健康和生态系统的新兴威胁之一[1].污水处理厂作为耐药菌(antibiotic-resistant bacteria, ARB)和耐药基因(antibiotic-resistance genes, ARGs)的汇与源, 是当前细菌耐药性研究的热点环境之一[2].已有大量研究报道了市政污水处理厂中ARB和ARGs分布特征[3~5], 其中ARB绝对浓度范围为103~106 CFU·mL-1, ARGs绝对丰度则介于103~109 copies·L-1之间[6].目前仅有少数研究者考察了工业废水处理厂中ARB和ARGs的分布与去除特征.有研究表明, 制革[7]和制药[8]工业废水处理厂中磺胺类ARB绝对浓度为103~107 CFU·mL-1, 显著高于市政污水处理厂水平(1.1×10~2.1×103 CFU·mL-1)[9].有研究发现, 克罗地亚某制药工业废水处理厂污泥中 sulⅠ相对丰度较市政污水处理厂高出7.9倍[10].此外, 最新研究证实, 市政污水处理厂的总ARGs去除量是工业(包括印染、制药和机械加工等)废水处理厂的7.7倍[11].鉴于工业废水中ARB或ARGs丰度高和去除难等特性, 有必要加强其分布与去除的相关研究.

石化废水是一种典型的工业废水, 富含有机物(如烃类、酚类和酮类等)、盐类和重金属等污染物[12].其中, 烃类有机物已被证实会显著影响ARGs的增殖.有研究表明, 多环芳烃可使海水中intI1sulⅠaadAII的相对丰度升高1~2个数量级[13], 且会促进ARGs水平转移[13, 14].此外, 盐度也被证实能够改变ARGs的分布特性.在膜生物反应器中, 4%氯化钠可使活性污泥中ARGs(尤其是sulⅡtetGamrB)的相对丰度降低约50%[15]; 而在高盐制药废水中, sulⅠintI1去除效率随盐度升高而降低[16].盐度主要通过影响水平基因转移和菌群结构改变ARGs的分布[17].再者, 重金属已被证实为ARB和ARGs增殖与传播的关键环境驱动因子[18, 19].鉴于石化废水处理厂中种类繁杂的潜在耐药驱动污染物, 其可能会成为重要环境耐药储存库之一.然而, 目前仍鲜有研究关注石化废水处理系统的ARB和ARGs分布特征.

废水处理系统中ARGs按物理形态可细分为细菌细胞内ARGs(iARGs)、固着态胞外ARGs(aeARGs)和游离态胞外ARGs(feARGs).不同形态ARGs的环境行为特征不尽相同:①增殖方式不同, iARGs可以通过细胞分裂垂直增殖或水平转移横向增殖, aeARGs或feARGs则主要来自细胞裂解或主动分泌[20, 21]; ②传播方式不同, iARGs主要通过接合和转导, 而aeARGs和feARGs则通过转化进行传播[22]; ③去除难度不同, 对于aeARGs和iARGs, 只要尽可能截留出水中的生物量即能消除其主体风险[23]; 对于feARGs, 鉴于其游离状态、较小的尺寸和较高的稳定性, 现有常规污水处理技术多无法有效去除[24].有研究初步表明, ARB和不同形态ARGs可持久存在于污水和污泥处理系统中[24, 25].同时, 生物处理[26]、消毒[27]、膜[28, 29]、高级氧化[30]和组合工艺[31]等污水处理技术能不同程度去除ARB和不同形态ARGs.然而, 石化废水中ARB和不同形态ARGs的分布与去除特征仍鲜见报道.

本文以某石化废水处理厂为研究对象, 采用抗生素敏感性测试检测ARB浓度, 通过qPCR技术确定不同形态ARGs丰度, 并利用冗余分析明确ARB和不同形态ARGs的关键影响因素, 以期为石化废水处理厂中ARB和不同形态ARGs的污染研究与风险评估提供参考.

1 材料与方法 1.1 样品采集及预处理

选取某座处理规模15 000~20 000 m3·d-1的石化废水处理厂进行全面取样, 其工艺流程如图 1所示.该厂设有生物膜法预处理-曝气工艺(O/O工艺)、一段曝气-二段接触氧化工艺(HO/O工艺)、厌氧-好氧工艺(A/O工艺)这3套平行废水生物处理工艺.

图 1 石化废水处理厂工艺流程及取样点示意 Fig. 1 Treatment process and sampling sites of petrochemical wastewater treatment plants (PWWTPs)

样品采集于2020年5月, 取样点如图 1所示, 具体包括:进水(JS); O/O工艺[预处理池出水(A1)、曝气池始末端泥水混合液(A2-1和A2-2)、沉淀池出水(A3)]; HO/O工艺[一段曝气池始末端泥水混合液(B1-1和B1-2)、中沉池末端泥水混合液(B2)、二段接触氧化池出水(B3)、二沉池出水(B4)]; A/O工艺[厌氧池始末端泥水混合液(C1-1和C1-2)、好氧池始末端泥水混合液(C2-1和C2-2)、沉淀池出水(C3)]; 出水(CS).全部取样点均做2次重复取样.样品采集后冷藏运输至实验室.水样经0.45 μm滤膜过滤后于-20℃保存, 泥水混合液于-80℃保存.

1.2 ARB检测

将样品(JS、A2-1、A2-2、B1-1、B1-2、B2、C1-1、C1-2、C2-1、C2-2、C3和CS)用无菌0.85%氯化钠溶液分别稀释101、102和103倍, 并取1 mL稀释后的样品涂布到MH琼脂培养板(38 g·L-1).培养平板类型分为4种:1种未添加抗生素的空白平板, 其余3种平板分别添加1 g·L-1四环素盐酸盐, 10 g·L-1磺胺甲噁唑和1 g·L-1氨苄西林.抗生素浓度遵循美国临床和实验室标准协会的标准选取抗生素最小抑制浓度[32].同时, 取1 mL无菌0.85%氯化钠溶液涂布在无菌琼脂平板上用作完全空白对照, 以监测与控制人为污染.将平板在37℃培养箱中倒置培养24 h.每个稀释梯度做2个平板.

选取菌落数在30~300 CFU(菌落形成单位)之间的平板计数菌落总数.ARB的绝对浓度为添加抗生素的实验组菌落数.

1.3 DNA提取与检测 1.3.1 细胞态DNA提取与检测

活性污泥细胞外附着态DNA(aeDNA)的提取参考Palmgren等[33]的方法.具体步骤如下:①向离心管内加入2 g离子交换树脂(CER)和5 mL磷酸盐缓冲液, 摇匀后静置活化1 h, 再于10 000 r·min-1、4℃下离心5 min, 并移除上清液4 mL; ②另取8 mL样品(A2-1、A2-2、B1-1、B1-2、B2、C1-1、C1-2、C2-1、C2-2和C3)于4 000 r·min-1、4℃下离心5 min, 弃上清液, 补充磷酸盐缓冲液至5 mL, 混匀并转移至上述离心管内; ③将CER-污泥混合液置于4℃, 250 r·min-1恒温振荡箱培养10 h后, 再于10 000 r·min-1、4℃离心15 min, 小心取出上清液, 过0.22 μm膜, 即得aeDNA粗提取液.

参考Zhou等[34]的方法继续提取污泥沉淀中的胞内DNA(iDNA).具体步骤如下:①在约300 mg湿泥中加入810 μL iDNA抽提缓冲液和3 μL蛋白酶K(20 mg·mL-1), 于37℃、225 r·min-1水平振荡30 min; ②加入90 μL十二烷基硫酸钠(20%), 于65℃水浴2 h, 水浴时每隔15 min颠倒混匀一次; ③于10 000 r·min-1离心10 min取沉淀, 再加入270 μL抽提缓冲液和30 μL SDS(20%).轻微涡旋混匀后, 于65℃水浴10 min; ④重复步骤②和③一次; ⑤合并3次离心获得的上清液, 即得iDNA粗提取液.

采用苯酚-氯仿法[35]纯化aeDNA和iDNA粗提取液, 并采用酶标仪(Biotek, 美国)测定其纯度和浓度.纯DNA标准[36]为:A260/A280为1.8~2.0, A260/A230>2.0.

1.3.2 游离态DNA提取与检测

采用改良乙醇沉淀法分离污水中游离态DNA(feDNA).具体步骤如下:①向8 mL污水样品(JS、A1、A2-2、A3、B1-2、B2、B3、B4、C1-2、C2-2、C3和CS)中依次加入2.5 mL乙酸铵(7.5 mol·L-1)和15 mL预冷无水乙醇, 颠倒混匀, 于冰上静置1 h; ②在4℃、14 000 r·min-1离心30 min后, 移除上清液, 保留沉淀; ③加入1 mL预冷70%乙醇, 轻微混匀, 将沉淀初步转移至新的离心管中, 于4℃、14 000 r·min-1离心10 min后, 弃上清液; ④再次向步骤②沉淀中加入1 mL预冷70%乙醇, 轻微混匀后将沉淀彻底转移至步骤③的新离心管, 离心去上清液; ⑤加入50 μL无菌无酶水, 即得feDNA溶液.采用PicoGreen dsDNA Quantitation Kit荧光染料试剂盒和多功能酶标仪(BioTek, 美国)测定feDNA浓度.

1.4 ARGs定量检测

选取废水处理厂常见的6亚类ARGs( sulⅠsulⅡtetXtetCtetOtetM), 1类整合子intI1以及16S rDNA为目标基因.基于SYBR Green I方法, 采用实时荧光定量PCR仪(Roche LightCycler 96, 瑞士)对aeDNA和iDNA中的ARGs进行定量测定.此外, 定量测定feDNA中sulⅡtetM及16S rDNA.预实验(取样点为JS、A2-2、B3、C2和CS)结果显示, sulⅡtetM分别为feDNA中丰度最高的磺胺类ARGs和四环素类ARGs, 故选取二者开展feARGs相关研究. sulⅠsulⅡtetXtetCtetOtetMintI1和16S rDNA的引物序列和退火温度参见文献[37~41]. qPCR采用20 μL体系, 具体包含:10 μL SuperReal PreMix Plus(TIANGEN, 中国), 0.6 μL正、反引物, 2 μL DNA模板和6.8 μL ddH2O.反应程序为:95℃预变性1~2 min, 95℃变性30 s, 退火30 s, 72℃延伸30 s, 共40个循环.引物和标准质粒委托上海美吉生物公司制备, 目标基因标准曲线的线性相关R2系数为0.993~0.998, 且每个样品设置3个平行样.

1.5 化学分析

参照国家环保总局发布的标准方法[42]测定化学需氧量(COD)、总氮、Cl-浓度、重金属(Cu、Fe、Zn、Mn)浓度以及混合液挥发性悬浮固体浓度(MLVSS).参考国家环保部发布的标准方法[43], 采用气相色谱-质谱联用仪(Agilent 7890B-5977B, 美国)确定有机物种类和相对含量, 具体参数和检测条件如下:色谱柱Agilent HP-5MS(30 m×250 μm×0.25 μm); 初始温度30℃, 保持3 min, 继续以15℃·min-1升温至260℃并保持3 min; 进样量0.1 μL; 高纯氮气载气, 流量1.0 mL·min-1; EI质谱离子源; 离子缘温度230℃; 四极杆温度150℃; 质谱扫描范围12~550 u, 全扫描模式; 采用MassHunter软件进行有机物相对定量分析.

1.6 统计分析

采用SPSS Statistics 19软件做配对样本t检验, 以评估不同样本之间差异; 利用CANOCO 5.0软件进行冗余分析, 以探索环境因子(COD、总氮、Cl-、Cu、Fe、Zn、Mn)、ARB和3种不同形态ARGs之间的相关性.本实验数据的标准偏差以误差棒表示.

ARB相对浓度计算公式如下:

(1)

以绝对丰度和相对丰度评估ARGs丰度, 具体计算公式如下:

(2)
(3)
2 结果与讨论 2.1 石化废水处理厂中ARB的分布与去除 2.1.1 石化废水处理厂中ARB的分布特征

废水处理过程中四环素、磺胺和氨苄西林这3类ARB的检出结果如图 2所示.3类ARB总体绝对浓度为8.45×102~2.38×105 CFU·mL-1, 相对浓度则为0.006~0.506.此外, 不同工艺流程中四环素类和氨苄西林类ARB绝对浓度无明显波动; 而A/O工艺中磺胺类ARB绝对浓度和相对浓度均呈先降后升趋势.再者, ARB绝对浓度由高到低呈现为磺胺类≈氨苄西林类>四环素类.国内外研究表明[9, 29], 污水处理厂四环素类ARB的比例也低于其他几种常检测的ARB.造成四环素类ARB浓度较低的原因可能是细菌对四环素的固有耐药水平低[5].

图 2 石化废水处理厂中ARB的浓度 Fig. 2 Concentration of ARB in PWWTPs

对比分析可知, 进水中ARB绝对浓度(2.10×102~4.25×102 CFU·mL-1)低于中国河北[7]、中国无锡[44]和罗马尼亚[45]等国家/城市的工业废水处理厂进水中ARB的水平(105~107 CFU·mL-1).此外, 生物处理单元中ARB绝对浓度(1.25×104~1.54×105 CFU·mL-1)显著高于进水水平2~3个数量级, 但其相对浓度(0.006~0.056)反而较进水水平降低0.49 lg~1.17 lg.前者可能主要与污泥吸附的抗生素、金属离子等对ARB的选择促进作用有关; 后者则可能是因为污泥混合液中异养菌浓度高(较进水高3个数量级).再者, 废水处理厂出水中ARB绝对浓度(3.95×102~9.00×102 CFU·mL-1)高出进水水平0.12 lg~0.63 lg, 说明石化废水处理厂会促进ARB的增殖与扩散.实际上, Zhang等[46]的研究同样观察到美国密歇根州某工业废水处理显著增加了不动杆菌耐药性和多重耐药性.然而, 石化废水处理厂中ARB的长期动态分布特征及其驱动因子仍有待进一步深入地探究.

2.1.2 石化废水处理厂中ARB的去除效果

总体而言, 石化废水处理厂对ARB去除量为-0.12 lg~-0.63 lg. ARB负去除现象推测与废水中有毒有机物[7]和重金属[18]对ARB形成的选择压作用有关.对比废水处理各单元对ARB去除量发现(表 1), ARB去除效果与其类型密切相关.例如, 经曝气处理后, 四环素和氨苄西林类ARB绝对浓度降低了0.03 lg~0.22 lg, 而磺胺类ARB绝对浓度则有所增加(0.03 lg~0.12 lg).这与磺胺较四环素和氨苄西林相对较高的结构稳定特性一致[47].此外, ARB去除效果因处理单元类型不同而存在一定差异.厌氧池、曝气池和沉淀池对ARB去除量分别为0.04 lg~0.21 lg、-0.12 lg~0.22 lg和-0.41 lg~0.18 lg.具体而言, 厌氧处理单元对四环素和氨苄西林类ARB均有一定去除效果可能是因为厌氧条件有利于抗生素分解[48]和削减水平基因转移作用[49]; 而沉淀过程使四环素类和氨苄西林类ARB绝对浓度增加0.02 lg~0.41 lg, 其原因可能在于细菌(包括ARB)的密度随污泥沉降逐渐增大[48].

表 1 不同废水处理单元对ARB和ARGs的平均去除量1) Table 1 Removal efficiency of ARB and ARGs by different wastewater treatment units

2.2 石化废水处理厂中3种不同形态ARGs的分布特征与去除效能 2.2.1 石化废水处理厂中3种不同形态ARGs的分布特征

石化废水处理厂中3种不同形态ARGs的分布情况如图 3所示.由图 3(a)~3(d)可以看出, 活性污泥中拥有丰富多样的aeARGs和iARGs.在绝对丰度层面上, aeARGs和iARGs水平处于同一数量级(分别为1.96×107~3.02×1010 copies·g-1和5.22×107~4.15×1010 copies·g-1), 表明aeARGs亦是活性污泥抗性库的重要组成之一[20].aeARGs的绝对丰度与中国北京[50](7.31×106~1.16×1010 copies·g-1)和中国上海[51](6.21×106~1.47×1010 copies·g-1)等城市市政污水处理厂的检测结果相近, 而iARGs绝对丰度较其则低1~3个数量级.此外, aeARGs和iARGs相对丰度分别为9.81×10-5~1.74×100和7.21×10-6~7.46×10-1, 高于本课题组前期研究中市政污泥中ARGs水平1~4个数量级[20]. 进一步分析发现, ARGs丰度水平与其类型和形态有关.一方面, 从ARGs类型看, 在6亚类ARGs中, tetOtetM绝对丰度最高(1.57×108~4.15×1010 copies·g-1).另一方面, 配对样本t检验证实, 同一类型胞内外ARGs的丰度存在显著差异.例如, 细胞内sulⅡ绝对丰度显著高于其细胞外水平(P<0.05).这一差异可能与遗传类型(染色体或质粒携带)[22]、aeARGs和iARGs的动态转换和降解有关[20].再者, aeARGs绝对丰度沿HO/O工艺流程递增, 在A/O工艺中绝对丰度则呈先减后增趋势; 而iARGs绝对丰度和相对丰度的波动则无明显规律.值得注意的是, aeDNA和iDNA检出的intI1绝对丰度分别达到2.88×109~5.11×1012 copies·g-1和7.56×107~1.47×109copies·g-1.intI1被视作人类抗生素污染和环境中ARGs增殖的指示剂之一[52].因此, 活性污泥中intI1可能会促进aeARGs和iARGs在环境中进一步传播与扩散.

(a)aeARGs的绝对丰度; (b)aeARGs的相对丰度; (c)iARGs的绝对丰度; (d)iARGs的相对丰度; (e)feARGs的绝对丰度; (f)feARGs的相对丰度 图 3 石化废水处理厂中3种不同形态ARGs的丰度 Fig. 3 Abundance of three different forms of ARGs in PWWTPs

图 3(e)3(f)可知, 所有取样点中均检出feARGs(绝对丰度为5.90×108~1.01×1012copies·L-1).进水中sulⅡtetM的绝对丰度分别为5.90×108 copies·L-1和6.65×1010 copies·L-1, 而相对丰度分别为1.51×10-2和1.70×101.这与中国合肥某市政污水处理厂的feARGs检出水平(1.66×108~2.08×1011 copies·L-1)接近[53], 但高于中国南京(约107~108 copies·L-1)某市政污水处理厂约1~2个数量级[31].此外, 生物处理单元sulⅡtetM的绝对丰度和相对丰度均高于进水1~3个数量级, 表明生物处理单元会促进feARGs的产生.再者, 出水中sulⅡtetM的绝对丰度分别为3.79×109 copies·L-1和7.68×1010 copies·L-1, 较进水分别增殖0.81 lg和0.06 lg, 且高于Yuan等[31]的研究结果1~2个数量级(sulⅡ:107 copies·L-1, tetM:109copies·L-1).因此, 石化废水处理厂出水中feARGs介导受纳环境ARGs的传播扩散风险仍值得后续研究深入评估.

2.2.2 石化废水处理厂中3种不同形态ARGs的去除效果

表 1可以看出, 厌氧池、曝气池和沉淀池对aeARGs和iARGs总去除量分别为-0.34 lg~0.65 lg、-1.13 lg~0.80 lg和-1.17 lg~1.21 lg.具体而言, 厌氧处理后aeARGs(除tetM)绝对丰度下降0.13 lg~0.65 lg, iARGs绝对丰度则降低0.04 lg~0.28 lg, 这与厌氧过程ARB去除量(0.04 lg~0.21 lg)一致.其次, 曝气池中aeARGs和iARGs的丰度变化与ARGs类型和形态密切相关.例如, 生物膜法预处理-曝气工艺(O/O工艺)中曝气池使sulⅠsulⅡ绝对丰度下降了0.27 lg~0.80 lg, 但tetXtetM绝对丰度升高了0.16 lg~1.13 lg.这可能与ARGs耐药机制(sulⅠsulⅡ:靶位迂回; tetX:靶位修饰; tetM:核糖体保护)[54]不同有关.在一段曝气-二段接触氧化工艺(HO/O工艺)曝气池中, 胞内sulⅠsulⅡ绝对丰度分别降低0.29 lg和0.18 lg, 而胞外sulⅠsulⅡ绝对丰度则升高了0.12 lg和0.35 lg.再者, 不同工艺中沉淀池对aeARGs和iARGs的去除作用迥异(P<0.05).例如, 厌氧-好氧工艺(A/O工艺)沉淀池对胞内外tetCtetOtetM去除量为0.13 lg~0.60 lg, 而HO/O工艺中沉池则使其增殖0.10 lg~0.80 lg.鉴于部分aeARGs和iARGs发生增殖(0.10 lg~1.17 lg), 若后续污泥处理不当, 将导致ARGs传播、扩散至自然生态环境.

O/O、HO/O和A/O 3条废水处理工艺对游离态sulⅡ的总去除量分别为-0.02 lg、0.16 lg和-1.73 lg; 其对tetM的总去除量分别为0.07 lg、0.11 lg和0.32 lg.其中, HO/O工艺对feARGs去除量最高, 但仍低于大多数研究报道的结果(0.39 lg~2.01 lg)[24, 26, 31, 55].进一步探究不同污水处理单元中sulⅡtetM丰度变化时发现, HO/O工艺接触氧化池和A/O工艺曝气池可去除0.53 lg~1.18 lg feARGs; 相反, 在沉淀池中, feARGs绝对丰度最高上升了2.84 lg, 说明沉淀池对feARGs具有一定富集作用.实际上, 张衍等[55]的研究表明, 沉淀工艺促使游离态胞外sulⅡ在总sulⅡ的占比从0.05%提高至1.33%.其原因可能在于, 沉淀过程中污泥处于厌氧状态, 细胞裂解释放了一定丰度feARGs(即部分aeARGs和iARGs转变为feARGs)[56].

2.3 石化废水处理厂中ARB和3种不同形态ARGs分布的主要影响因子

采用冗余分析探究了环境因素对ARB浓度和不同形态ARGs丰度的影响, 结果如图 4所示.环境因素能解释ARB绝对浓度73.60%及其相对浓度94.78%的变化特征.分析表明, 四环素和氨苄西林类ARB绝对或相对浓度均与COD和Cl-浓度正相关, 磺胺类ARB绝对或相对浓度则与COD和总氮浓度正相关.这说明, COD是影响石化废水处理厂中ARB分布特征的重要因子之一.其原因可能在于高浓度有机物环境中细菌密度较高, 有利于ARGs的水平转移.Jin等[57]的研究已证实COD可以显著提高细菌转化频率, 促进ARB的产生与增殖.因此, 高COD、高盐和高氮石化废水可能会增加ARB扩散至环境的风险.

(a)ARB绝对浓度与环境因子, (b)ARB相对浓度与环境因子, (c)ARGs绝对丰度与环境因子, (d)ARGs相对丰度与环境因子; ae表示aeARGs, i表示iARGs, fe表示feARGs 图 4 ARB和不同形态ARGs与环境因子的冗余分析 Fig. 4 Redundancy analysis of the relationship between ARB, different ARGs forms, and environmental factors

环境因素对ARGs绝对丰度和相对丰度变化的解释率分别为88.76%和89.67%.无论是在绝对丰度抑或相对丰度水平, aeARGs(intI1sulⅡtetC)与COD和总氮浓度显著正相关(P<0.05).He等[51]、Zhuang等[58]和Sui等[59]基于相关性分析发现, aeARGs和iARGs丰度与COD呈正相关, 表明水中有机物会对aeARGs和iARGs产生一定影响.气相色谱-质谱联用仪检测结果显示, 进水中富含甲基异丁酮(93.11%)、四氢呋喃(3.75%)和三氯甲烷(2.89%)等有机物, 但其对石化废水处理厂中ARB或不同形态ARGs的具体影响仍待探究.此外, Hao等[60]的研究同样观察到iARGs(磺胺类)丰度与总氮浓度显著正相关, 表明不同形态ARGs丰度特征受水质情况(COD和氮浓度)强烈影响.再者, iARGs和feARGs均与重金属(尤其是Zn)浓度显著正相关.这可能与重金属会刺激ARGs的水平基因转移有关[18, 19].已有研究报道了沉积物[61]和尾矿库废水[62]等环境中aeARGs和iARGs与重金属的正相关性.然而, 水质对不同形态ARGs影响研究仍多限于相关性分析, 其具体影响(尤其是对水平基因转移作用的影响)有待验证.

3 结论

(1) 石化废水处理厂中检出的四环素、磺胺和氨苄西林类ARB总体绝对浓度为8.45×102~2.38×105 CFU·mL-1.厌氧池、曝气池和沉淀池对ARB去除量分别为0.04 lg~0.21 lg、-0.12 lg~0.22 lg和-0.41 lg~0.18 lg.出水中ARB绝对浓度为3.95×102~9.00×102 CFU·mL-1, 表明石化废水处理会增加ARB(特别是氨苄西林类ARB)扩散至环境的风险.

(2) 6亚类aeARGs和iARGs在活性污泥中均可检出, 其中tetOtetM绝对丰度最高(1.57×108~4.15×1010 copies·g-1); feARGs的绝对丰度为5.90×108~1.01×1012 copies·L-1.厌氧池、曝气池和沉淀池对aeARGs和iARGs去除量分别为-0.34 lg~0.65 lg、-1.13 lg~0.80 lg和-1.17 lg~1.21 lg; 废水处理厂使feARGs增殖0.06 lg~0.81 lg, 表明石化废水处理厂可能会增加ARGs的潜在传播风险.

(3) 冗余分析表明, 四环素和氨苄西林类ARB与COD和Cl-浓度正相关; 磺胺类ARB与COD和总氮浓度正相关; aeARGs(intI1sulⅡtetC)与COD和总氮浓度显著正相关; iARGs和feARGs均与重金属浓度显著正相关.

参考文献
[1] UNEP. Frontiers 2017 Emerging Issues of Environmental Concern[R]. Nairobi: United Nations Environment Programme, 2017.
[2] Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review[J]. Science of the Total Environment, 2013, 447: 345-360. DOI:10.1016/j.scitotenv.2013.01.032
[3] Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007, 41(5): 1143-1151. DOI:10.1016/j.watres.2006.11.045
[4] Lapara T M, Burch T R, McNamara P J, et al. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-superior harbor[J]. Environmental Science & Technology, 2011, 45(22): 9543-9549.
[5] 陆孙琴, 李轶, 黄晶晶, 等. 污水处理厂二级出水中总异养菌群对6种抗生素的耐受性研究[J]. 环境科学, 2011, 32(11): 3419-3424.
Lu S Q, Li Y, Huang J J, et al. Antibiotic resistance of bacteria to 6 antibiotics in secondary effluents of municipal wastewater treatment plants[J]. Environmental Science, 2011, 32(11): 3419-3424.
[6] Wang J L, Chu L B, Wojnárovits L, et al. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview[J]. Science of the Total Environment, 2020, 744. DOI:10.1016/j.scitotenv.2020.140997
[7] 花莉, 李璐, 杨春燕. 制革废水处理过程中磺胺类抗生素和抗性细菌的分布特征[J]. 环境科学, 2018, 39(9): 4229-4235.
Hua L, Li L, Yang C Y. Distribution characteristics of sulfonamides and sulfamethoxazole-resistant bacteria in tannery wastewater treatment processes[J]. Environmental Science, 2018, 39(9): 4229-4235.
[8] Tahrani L, Soufi L, Mehri I, et al. Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters[J]. Microbial Pathogenesis, 2015, 89: 54-61. DOI:10.1016/j.micpath.2015.09.001
[9] Ben W W, Wang J, Cao R K, et al. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes[J]. Chemosphere, 2017, 172: 392-398. DOI:10.1016/j.chemosphere.2017.01.041
[10] Bengtsson-Palme J, Milakovic M, Švecová H, et al. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities[J]. Water Research, 2019, 162: 437-445. DOI:10.1016/j.watres.2019.06.073
[11] Ding H J, Qiao M, Zhong J Y, et al. Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake[J]. Water Research, 2020, 174. DOI:10.1016/j.watres.2020.115603
[12] Hu J T, Fu W Y, Ni F, et al. An integrated process for the advanced treatment of hypersaline petrochemical wastewater: a pilot study[J]. Water Research, 2020, 182. DOI:10.1016/j.watres.2020.116019
[13] Wang J, Wang J, Zhao Z L, et al. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community[J]. Environmental Pollution, 2017, 231: 1145-1152. DOI:10.1016/j.envpol.2017.07.067
[14] Shou W J, Kang F X, Huang S H, et al. Substituted aromatic-facilitated dissemination of mobile antibiotic resistance genes via an antihydrolysis mechanism across an extracellular polymeric substance permeable barrier[J]. Environmental Science & Technology, 2019, 53(2): 604-613.
[15] Liu M T, Li Q L, Sun H H, et al. Impact of salinity on antibiotic resistance genes in wastewater treatment bioreactors[J]. Chemical Engineering Journal, 2018, 338: 557-563. DOI:10.1016/j.cej.2018.01.066
[16] Guo N, Wang Y K, Tong T Z, et al. The fate of antibiotic resistance genes and their potential hosts during bio-electrochemical treatment of high-salinity pharmaceutical wastewater[J]. Water Research, 2018, 133: 79-86. DOI:10.1016/j.watres.2018.01.020
[17] Tan L, Wang F, Liang M M, et al. Antibiotic resistance genes attenuated with salt accumulation in saline soil[J]. Journal of Hazardous Materials, 2019, 374: 35-42. DOI:10.1016/j.jhazmat.2019.04.020
[18] Poole K. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance[J]. Trends in Microbiology, 2017, 25(10): 820-832. DOI:10.1016/j.tim.2017.04.010
[19] Di Cesare A, Eckert E, Corno G. Co-selection of antibiotic and heavy metal resistance in freshwater bacteria[J]. Journal of Limnology, 2016, 75(S2): 59-66.
[20] Zhou S, Zhu Y J, Yan Y, et al. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome[J]. Water Research, 2019, 161: 610-620. DOI:10.1016/j.watres.2019.06.048
[21] Dominiak D M, Nielsen J L, Nielsen P H. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms[J]. Environmental Microbiology, 2011, 13(3): 710-721. DOI:10.1111/j.1462-2920.2010.02375.x
[22] Mao D Q, Luo Y, Mathieu J, et al. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation[J]. Environmental Science & Technology, 2014, 48(1): 71-78.
[23] Breazeal M V R, Novak J T, Vikesland P J, et al. Effect of wastewater colloids on membrane removal of antibiotic resistance genes[J]. Water Research, 2013, 47(1): 130-140. DOI:10.1016/j.watres.2012.09.044
[24] Zhang Y, Li A L, Dai T J, et al. Cell-free DNA: a neglected source for antibiotic resistance genes spreading from WWTPs[J]. Environmental Science & Technology, 2017, 52(1): 248-257.
[25] Wang S, Ma X X, Liu Y L, et al. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants[J]. Bioresource Technology, 2020, 302. DOI:10.1016/j.biortech.2020.122825
[26] Quach-Cu J, Herrera-Lynch B, Marciniak C, et al. The effect of primary, secondary, and tertiary wastewater treatment processes on antibiotic resistance gene (ARG) concentrations in solid and dissolved wastewater fractions[J]. Water, 2018, 10(1). DOI:10.3390/w10010037
[27] Yoon Y, Chung H J, Di D Y W, et al. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2[J]. Water Research, 2017, 123: 783-793. DOI:10.1016/j.watres.2017.06.056
[28] Slipko K, Reif D, Wögerbauer M, et al. Removal of extracellular free DNA and antibiotic resistance genes from water and wastewater by membranes ranging from microfiltration to reverse osmosis[J]. Water Research, 2019, 164. DOI:10.1016/j.watres.2019.114916
[29] 刘亚兰, 李冰, 邱勇, 等. 无锡市污水处理厂抗生素抗性菌分布与去除特性研究[J]. 环境科学学报, 2017, 37(6): 2114-2121.
Liu Y L, Li B, Qiu Y, et al. Distribution and removal characteristics of antibiotic resistant bacteria in wastewater treatment plants at Wuxi[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2114-2121.
[30] Guo C S, Wang K, Hou S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323: 710-718. DOI:10.1016/j.jhazmat.2016.10.041
[31] Yuan Q B, Huang Y M, Wu W B, et al. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads[J]. Environment International, 2019, 131. DOI:10.1016/j.envint.2019.104986
[32] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[Z]. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute, 2017.
[33] Palmgren R, Nielsen P H. Accumulation of DNA in the exopolymeric matrix of activated sludge and bacterial cultures[J]. Water Science & Technology, 1996, 34(5-6): 233-240.
[34] Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition[J]. Applied Environmental Microbiology, 1996, 62(2): 316-322. DOI:10.1128/aem.62.2.316-322.1996
[35] Corinaldesi C, Danovaro R, Dell'Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments[J]. Applied and Environmental Microbiology, 2005, 71(1): 46-50. DOI:10.1128/AEM.71.1.46-50.2005
[36] 萨姆布鲁克J, 拉塞尔D W. 分子克隆实验指南上册[M]. 黄培堂, 译. (第三版). 北京: 科学出版社, 2002.
[37] Pei R T, Kim S C, Carlson K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water Research, 2006, 40(12): 2427-2435. DOI:10.1016/j.watres.2006.04.017
[38] Ng L K, Martin I, Alfa M, et al. Multiplex PCR for the detection of tetracycline resistant genes[J]. Molecular and Cellular Probes, 2001, 15(4): 209-215. DOI:10.1006/mcpr.2001.0363
[39] Aminov R I, Garrigues-Jeanjean N, Mackie R I. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins[J]. Applied and Environmental Microbiology, 2001, 67(1): 22-32. DOI:10.1128/AEM.67.1.22-32.2001
[40] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19): 7220-7225.
[41] Fierer N, Jackson J A, Vilgalys R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Applied and Environmental Microbiology, 2005, 71(7): 4117-4120. DOI:10.1128/AEM.71.7.4117-4120.2005
[42] 国家环境保护总局. 水和废水监测分析方法[M]. (第四版). 北京: 中国环境科学出版社, 2002.
[43] HJ 810-2016, 水质挥发性有机物的测定顶空/气相色谱-质谱法[S].
[44] 刘亚兰, 马岑鑫, 丁河舟, 等. 污水处理厂消毒技术对抗生素抗性菌的强化去除[J]. 环境科学, 2017, 38(10): 4286-4292.
Liu Y L, Ma C X, Ding H Z, et al. Enhanced antibiotic resistant bacteria removal from wastewater treatment plant by different disinfection technologies[J]. Environmental Science, 2017, 38(10): 4286-4292.
[45] Lupan I, Carpa R, Oltean A, et al. Release of antibiotic resistant bacteria by a waste treatment plant from Romania[J]. Microbes and Environments, 2017, 32(3): 219-225. DOI:10.1264/jsme2.ME17016
[46] Zhang Y L, Marrs C F, Simon C, et al. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp[J]. Science of the Total Environment, 2009, 407(12): 3702-3706. DOI:10.1016/j.scitotenv.2009.02.013
[47] 徐维海, 张干, 邹世春, 等. 典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征[J]. 环境科学, 2007, 28(8): 1779-1783.
Xu W H, Zhang G, Zou S C, et al. Occurrence, distribution and fate of antibiotics in sewage treatment plants[J]. Environmental Science, 2007, 28(8): 1779-1783. DOI:10.3321/j.issn:0250-3301.2007.08.023
[48] Hiller C X, Hübner U, Fajnorova S, et al. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: a review[J]. Science of the Total Environment, 2019, 685: 596-608. DOI:10.1016/j.scitotenv.2019.05.315
[49] Tong J, Tang A P, Wang H Y, et al. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes[J]. Bioresource Technology, 2019, 272: 489-500. DOI:10.1016/j.biortech.2018.10.079
[50] Dong P Y, Wang H, Fang T T, et al. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG[J]. Environment International, 2019, 125: 90-96. DOI:10.1016/j.envint.2019.01.050
[51] He P J, Zhou Y Z, Shao L M, et al. The discrepant mobility of antibiotic resistant genes: evidence from their spatial distribution in sewage sludge flocs[J]. Science of the Total Environment, 2019, 697. DOI:10.1016/j.scitotenv.2019.134176
[52] Tian Z, Zhang Y, Yu B, et al. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic[J]. Water Research, 2016, 98: 261-269. DOI:10.1016/j.watres.2016.04.031
[53] Li N, Sheng G P, Lu Y Z, et al. Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation[J]. Water Research, 2017, 111: 204-212. DOI:10.1016/j.watres.2017.01.010
[54] 姚鹏城, 陈嘉瑜, 张永明, 等. 废水处理系统中抗生素抗性基因分布特征[J]. 环境科学, 2019, 40(11): 5024-5031.
Yao P C, Chen J Y, Zhang Y M, et al. Distribution characteristics of antibiotic resistance genes in wastewater treatment plants[J]. Environmental Science, 2019, 40(11): 5024-5031.
[55] 张衍, 陈吕军, 谢辉, 等. 两座污水处理系统中细胞态和游离态抗生素抗性基因的丰度特征[J]. 环境科学, 2017, 38(9): 3823-3830.
Zhang Y, Chen L J, Xie H, et al. Abundance of cell-associated and cell-free antibiotic resistance genes in two wastewater treatment systems[J]. Environmental Science, 2017, 38(9): 3823-3830.
[56] Liu M M, Hata A, Katayama H, et al. Consecutive ultrafiltration and silica adsorption for recovery of extracellular antibiotic resistance genes from an urban river[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.114062
[57] Jin M, Liu L, Wang D N, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation[J]. The ISME Journal, 2020, 14(7): 1847-1856. DOI:10.1038/s41396-020-0656-9
[58] Zhuang Y, Ren H Q, Geng J J, et al. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection[J]. Environmental Science and Pollution Research, 2015, 22(9): 7037-7044. DOI:10.1007/s11356-014-3919-z
[59] Sui Q W, Chen Y L, Yu D W, et al. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes[J]. Environment International, 2019, 133. DOI:10.1016/j.envint.2019.105183
[60] Hao H, Shi D Y, Yang D, et al. Profiling of intracellular and extracellular antibiotic resistance genes in tap water[J]. Journal of Hazardous Materials, 2019, 365: 340-345. DOI:10.1016/j.jhazmat.2018.11.004
[61] Guo X P, Yang Y, Lu D P, et al. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary[J]. Water Research, 2018, 129: 277-286. DOI:10.1016/j.watres.2017.11.029
[62] 黄福义, 朱永官, 苏建强. 尾矿库水体环境抗生素抗性基因的分布特征[J]. 环境科学, 2021, 42(2): 761-765.
Huang F Y, Zhu Y G, Su J Q. Diversity and abundance of antibiotic resistance genes in tailings ponds[J]. Environmental Science, 2021, 42(2): 761-765.