环境科学  2024, Vol. 45 Issue (3): 1480-1491   PDF    
浙南瓯江流域水体抗生素污染特征及风险评价
钟奕昕 , 李立湘 , 吴鑫 , 周施阳 , 姚飞延 , 董好刚     
中国地质调查局长沙自然资源综合调查中心, 长沙 410600
摘要: 环境中抗生素污染对生态系统安全产生负面影响.以瓯江流域为例, 采用高效液相色谱-串联质谱法对浙南诸河流域水体中6类35种抗生素浓度进行检测, 分析抗生素的浓度水平和空间分布, 利用相关模型评估抗生素对生态和人体的健康风险, 讨论抗生素的来源.结果表明, 瓯江流域地表水20个采样点中4类12种抗生素均有不同程度检出, 分别是磺胺类、喹诺酮类、四环素类和林可酰胺类, 总浓度为ND~1 018 ng·L-1.其中检出率较高的是林可霉素, 为90.48%, 其次是磺胺吡啶, 为38.10%.检出浓度平均值最大的3种抗生素分别是氧氟沙星(12.49 ng·L-1)、林可霉素(11.08 ng·L-1)和双氟沙星(7.38 ng·L-1).流域内抗生素以点状污染为主, 空间分异性较大, 上游抗生素浓度平均值(54.39 ng·L-1)大于中下游浓度平均值(46.64 ng·L-1), 抗生素污染程度由上游至下游呈现出“上疏下密”的特点;上游污染主要来源为医疗和畜禽养殖业废水的排放, 下游污染主要为人口活动密集和经济产业快速发展所导致.生态风险评估结果表明, 上游采样点H6具有最大的风险商值, 其中氧氟沙星和恩诺沙星具有高风险水平, 林可霉素具有中风险水平.健康风险评估结果表明, 瓯江流域水体抗生素对人体健康无风险.
关键词: 抗生素      浙南      瓯江流域      污染      生态风险     
Characteristics and Risk Assessment of Antibiotic Contamination in Oujiang River Basin in Southern Zhejiang Province
ZHONG Yi-xin , LI Li-xiang , WU Xin , ZHOU Shi-yang , YAO Fei-yan , DONG Hao-gang     
Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410600, China
Abstract: Antibiotic pollution in the environment has a negative impact on ecosystem security. Taking the Oujiang River Basin as an example, high-performance liquid chromatography mass spectrometry (LC-MS) was used to detect the concentration of six classes of 35 antibiotics in the surface water of the southern Zhejiang River Basin. The concentration level and spatial distribution of antibiotics were analyzed, the risk of antibiotics to ecology and human health were assessed using relevant models, and the sources of antibiotics were discussed. The results showed that in 20 sampling sites, a total of four classes of 12 antibiotics were detected, including sulfonamides, quinolones, tetracyclines, and lincosamides. The total concentration was ND-1 018 ng·L-1. The highest detection rate was that of Lincomycin (90.48%), followed by that of sulfapyridine (38.10%). The three antibiotics with the highest average concentrations were ofloxacin (12.49 ng·L-1), Lincomycin (11.08 ng·L-1), and difloxacin (7.38 ng·L-1). Antibiotics in the basin showed mainly spotty pollution, which had large spatial differentiation. The average concentration of antibiotics in the upstream (54.39 ng·L-1) was higher than that mid-downstream (46.64 ng·L-1). The degree of antibiotic pollution from upstream to downstream showed a characteristic of being "sparse in the upstream and dense in the downstream." This indicated that the concentration of antibiotics in the upstream was significantly different, whereas the pollution degree of antibiotics in the downstream was uniform. The upstream was mainly polluted by health, livestock, and poultry breeding wastewater emissions, and downstream pollution was mainly caused by densely populated activities and the rapid development of economy, trade, and industry. The ecological risk assessment results showed that the upstream site H6 had the highest risk quotient, ofloxacin and enrofloxacin had high risk levels, and lincomycin had a moderate risk level. Health risk assessment results showed that the Oujiang River surface water antibiotics posed no risk to human health.
Key words: antibiotic      southern Zhejiang      Oujiang River      contamination      ecological risks     

水体中抗生素通常来自废水处理厂的废水、畜禽养殖废弃物等的直接排放[1~4].由于其高水溶性、抗降解性以及对生态系统和人类健康的潜在危害等特性[5~7], 抗生素在不同河流中的污染及对水生环境的危害已经引起人们重视[8~13].在珠江流域、长江流域、汉江流域、黄河流域、海河流域和辽河流域等典型河流水体中均被证实存在多种抗生素的污染, 浓度水平在ng·L-1至μg·L-1数量级[14~21].蒋宝等[22]在北京市北运河中检测出磺胺吡啶、克拉霉素和氧氟沙星等7种抗生素, 且评估表明抗生素对藻类的风险为高风险;吴天宇等[23]在赤水河流域检测出12种抗生素, 总浓度为ND~1 166.97 ng·L-1, 其中3种抗生素检出率为100%;赵富强等[24]研究了我国七大河流水域的抗生素赋存状况, 结果表明水体中抗生素的检出种类普遍高于沉积物, 我国七大典型流域抗生素污染均处于高生态风险.

浙南诸河流域是浙江省的主要工农业经济区, 包括瓯江、飞云江和鳌江流域等, 其中瓯江为浙江第二大河, 干流全长388 km, 自源头到入海口分为三段, 分别为龙泉溪、大溪和瓯江.瓯江始于龙泉市, 上游云和县和青田县都在丽水市, 丽水市号称“中国水电第一市”, 是重要的水电开发区;中下游在温州市境内, 是东瓯古文化中心区域(图 1).近年来, 流域范围内经济飞速发展, 城镇化和工业化程度很高, 水环境质量面临较大威胁[25~31].当前在氮磷和重金属等常规污染物特征等方面的研究较为集中, 对于抗生素这一新型污染物的研究较少.本文以瓯江流域主要地表水作为研究对象, 选取6类35种常见抗生素(磺胺类9种、喹诺酮类16种、四环素类4种、大环内酯类4种、林可酰胺类1种和酰胺醇类1种)作为目标污染物, 分析35种抗生素在该流域的污染水平及空间分布特征, 评价抗生素对水体及人类的生态风险, 分析其来源, 以期为瓯江流域的抗生素污染防治提供决策依据.

图 1 瓯江流域采样点示意 Fig. 1 Sampling sites of Oujiang River Basin

1 材料与方法 1.1 仪器与试剂

仪器与耗材:岛津AOE系统与三重四极杆质谱仪LCMS-8050联用系统、色谱柱(Shim-pack GIST C18 2.1 mm I.D. × 100 mm L. 2 μm)、0.22 μm滤膜.

主要试剂:甲醇(农残级, 安谱生产);乙腈(HPLC梯度级, 安谱生产);甲酸(AR, 含量98%, 国药集团化学试剂有限公司);氨水(AR, 25%~28%, 成都市科隆化学品有限公司);屈臣氏饮用水;抗生素标准品包括:磺胺醋酰(SFM)、磺胺吡啶(SPD)、磺胺二甲异唑(SFX)、磺胺间二甲氧嘧啶(SMM)、磺胺氯哒嗪(SCP)、磺胺邻二甲氧嘧啶(SD)、磺胺对甲氧嘧啶(SMD)、磺胺二甲嘧啶(SM2)、磺胺甲噻二唑(SMT);林可霉素(LIN)、吡哌酸(PPA)、依诺沙星(ENO)、诺氟沙星(NOR)、氧氟沙星(OFX)、氟罗沙星(FLE)、土霉素(OTC)、强力霉素(DOC)、环丙沙星(CIP)、达氟沙星(DAF)、洛美沙星(LOM)、四环素(盐酸盐)、恩诺沙星(ENR)、西诺沙星(Cino)、喹酸(OXA)、红霉素(ERY)、萘啶酸(Nal)、罗红霉素(ROX)、氟甲喹(FLU)、交沙霉素(Jos)、氯霉素(CPL)、螺旋霉素(SPI)、司帕沙星(SPC)、双氟沙星(DIF)、莫西沙星(MOX)和金霉素(CTE);使用的内标有:噻苯达唑-D4、磺胺吡啶-13C6、达氟沙星-D3、氧氟沙星-D3、洛美沙星-D5、磺胺二甲嘧啶-13C6、磺胺氯哒嗪-13C6和氯霉素-D5.以上抗生素标准品均购买于安谱试验及坛墨试剂.

1.2 样品采集与预处理

于2022年8月23日对瓯江流域进行水样采集, 由于流域上游主要为山区, 下游逐步流向温州市等产业发展地区, 采样点主要为干、支流的人口活动区, 同时参考主要河流参考断面, 在瓯江干流、主要支流(松阴溪、好溪、小溪和楠溪江)以及流域内的内塘河网和乐清诸河等地由上游至下游一共设置20个采样点(其中H1~H11为上游, H12~H20为下游, 如图 1), 包括干流7个(采样点H1、H2、H4、H7、H10、H12和H17), 支流7个(采样点H3、H5、H6、H8、H9、H11和H13), 内塘河网4个(采样点H14、H15、H16和H18)和乐清诸河2个(采样点H19和H20).采用有机玻璃贝勒管采集河流表层水样2 L(采集深度为表层至水面以下0.5 m), 加入2 mL甲醇抑制微生物生长, 遮光低温(4℃)保存, 24小时内车辆运回实验室进行提取分析.

采用酸性上样的抗生素(除莫西沙星和达氟沙星以外的抗生素), 先取10 mL环境水样品离心, 过0.22 μm滤膜, 然后加入10 μL内标工作液, 再加入10 μL甲酸, 混匀后装入样品瓶中待测.采用碱性上样的抗生素(莫西沙星和达氟沙星)先取10 mL环境水样品离心, 过0.22 μm滤膜, 然后加入10 μL内标工作液, 再加入10 μL氨水, 混匀后装入样品瓶中待测.

1.3 仪器分析条件

液相色谱条件:固相萃取柱为Oasis HLB Direct Connect HP(2.1 mm I.D.×30 mm L. 20 μm);SPE输液泵为萃取液A:0.1%甲酸水, 萃取液B:0.1%氨水, 萃取液C:甲醇+乙腈(1∶1, 体积比).SPE流速为3 mL·min-1;色谱柱流动相为A相:0.1%甲酸水、B相:乙腈;流速为0.25 mL·min-1;柱温为40℃;进样量为3 000 μL;洗脱方式为梯度洗脱, 洗脱程序见表 1.

表 1 在线固相萃取法梯度洗脱条件 Table 1 Gradient elution conditions for on-line solid phase extraction

LCMS-8050质谱条件:采用电喷雾离子源(ESI)正-负离子模式、多反应离子监测(MRM)模式进行检测, 雾化气流速为3 L·min-1, 加热模块温度为400℃, 加热气流速为10.0 L·min-1, 干燥气流速为10.0 L·min-1.

1.4 质量控制

采用重复性和基体加标进行实验质量控制.配制不同浓度标准溶液, 连续进样6次, 考察分析方法保留时间和峰面积的重复性.35种抗生素的保留时间和峰面积的相对标准偏差(RSD)分别不超过0.24%和9.99%, 数据表明方法重复性良好.取自来水制备样品和加标样品, 各样品平行测定3次.测试结果显示绝大部分抗生素的加标回收率在60%~130%之间, 相对标准偏差在0.12%~10.36%之间, 说明本方法准确性较好.

1.5 风险评价 1.5.1 生态风险评价

由于当前国内尚未制定对抗生素污染浓度的环境限制标准, 借鉴欧洲风险评价技术指导文件(European commission technical guidance document, TGD)中风险商值法(risk quotients, RQs)对瓯江流域地表水中抗生素类药物进行生态风险评估[32], 计算公式如下:

(1)
(2)

式中, RQ为环境中的实际检出浓度(measured environmental concentration, MEC)与预测无效应浓度(predicted no effect concentration, PNEC)的比值, PNEC为EC50(半数效应浓度, ng·L-1)或者LC50(半数致死浓度, ng·L-1)与评价因子(assessment factors, AF, 无量纲)的比值.本研究的水生生物毒理数据库资料主要从美国ECOSAR数据库和部分已有研究中查找确定.为接近实际情况, 环境中实际检出浓度(MEC)选择最大值, 每种抗生素对应的水生生物毒性敏感数据如表 2所示.

表 2 水生生物毒性敏感数据1) Table 2 Toxicity sensitive data for aquatic organisms

1.5.2 健康风险评价

为评价瓯江流域表层水中抗生素对人体健康的风险, 根据人体对抗生素的日均可接受量(acceptable daily intake, ADI), 计算抗生素对人体健康的风险商(RQH), 计算公式如下:

(3)

式中, RQH为单一抗生素的健康风险商;MEC为实测浓度(μg·L-1), DWEL为饮用水当量值(μg·L-1).饮用水当量值DWEL=ADI×BW×HQ/(DWI×AB×FOE), 其中ADI是日均可接受量;BW是人均体重(kg), HQ为最高风险, 按1计算, DWI是每日饮水量, AB是肠胃吸收率, 按1计算, FOE是暴露频率(350 d·a-1), 按0.96计算[38].不同年龄段人群的人均体重及每日饮水量见表 3, 不同抗生素的ADI值见表 4.

表 3 成人及儿童平均体重以及每日饮水量[39] Table 3 Average weight and daily water intake for adults and children

表 4 不同抗生素的ADI值 Table 4 ADI values of different antibiotics

根据抗生素对人体健康和生态风险商的分类标准:当RQ值< 0.01时无风险, RQ值介于0.01~0.1间的为低风险, 介于0.1~1之间的为中等风险, RQ值≥1属于高风险.

2 结果与分析 2.1 瓯江流域水体抗生素浓度水平

通过对瓯江流域20个地表水采样点进行测定分析, 6类35种抗生素中共检测出4类12种, 磺胺类、四环类、喹诺酮类和林可酰胺类抗生素均被检出, 浓度范围依次为:ND~5.90、ND~33.70、ND~98.20和ND~61.00 ng·L-1, 抗生素总浓度水平在ND~1 018 ng·L-1, 结果如表 5所示.由于各抗生素均存在未检出的情况, 因此将12种抗生素的浓度最大值及检出率进行比较得到图 2, 可以看出LIN的检出率最高, 为90.48%, 其次是SPD, 检出率38.10%.另外, DIF的检出率为23.81%, FLE和OFL的检出率均为19.05%.其余抗生素检出率均低于10%.从检出浓度值可以看到, OFL检测得出的浓度最大值和平均值最高, 分别为98.20 ng·L-1和12.49 ng·L-1.其次是ENR, 检出浓度最大值为68.40 ng·L-1, 平均值为4.44 ng·L-1.LIN检出浓度最大值为61.00 ng·L-1, 平均值为11.08 ng·L-1.其余抗生素浓度平均值均小于10.00 ng·L-1.

表 5 不同类型抗生素检出程度1) Table 5 Detection degree of different types of antibiotics

图 2 瓯江流域抗生素检出浓度最大值及检出率 Fig. 2 Maximum value and detection rate of antibiotics in Oujiang River Basin

四环素类抗生素中仅强力霉素被检出, 浓度平均值为1.69 ng·L-1.强力霉素又称为多西环素, 是典型的兽用抗生素, 用量广泛且有很高的生物持久度[43, 44].有研究表明我国畜禽养殖业抗生素使用量约占总量的52%[45], 2020年兽用抗菌药用量最大的为四环素类抗生素, 占比30.52%[46].磺胺类抗生素检出2种, SPD和SCP, 该类抗生素中SPD的贡献率最大为88.9%, 平均值分别为1.21 ng·L-1(SPD)和0.30 ng·L-1(SCP).磺胺类抗生素, 水解稳定, 不易降解, 易于运输, 在地下水和地表水中含量较多[47~49].据统计, 我国磺胺类药物88.5%用于养殖业[50, 51], 因此对于瓯江流域, 畜禽、水产养殖行业对此类抗生素的浓度具有很大影响.喹诺酮类抗生素检出8种, 其中检出浓度最大值为OFL, 98.20 ng·L-1(平均值为12.49 ng·L-1), 也居所有抗生素检出浓度之首.OFL为比较典型的一种喹诺酮类抗生素, 在我国具有较大的使用需求, 且因其在水环境中存在状态相对稳定, 半衰期较长, 是地表水和地下水中常见的抗生素污染物, 在各地被高度检出[52~56].其次为ENR, 浓度最大值为68.40 ng·L-1(平均值为4.44 ng·L-1), ENR是动物专属用药, 对支原体有特效[57], ENR高度检出的原因, 可能是在养殖过程中为快速控制疫病, 养殖户违规加量或不遵守休药期规定导致.人若长期食用ENR超标的食品, 可能导致ENR在体内蓄积, 进而对人体机能产生危害[58~60].林可酰胺类检出1种(LIN), 浓度范围为ND~61.00 ng·L-1.LIN结构稳定, 目前的污水处理技术很难将其完全降解, 需要采取措施对其进一步优化[61~63].

2.2 瓯江流域水体抗生素空间分布特征

表 5可知, 瓯江流域中各类抗生素变异系数均大于100%, 表明流域水体中抗生素的污染存在明显的空间分异性, 各采样点抗生素累计浓度及不同类别占比如图 3所示.总体来说, 上游抗生素浓度平均值(54.39 ng·L-1) > 中下游浓度平均值(46.64 ng·L-1), 支流的累计检出浓度大于干流检出浓度.同时, 可以明显看出抗生素污染程度由上游至下游呈现出“上疏下密”的特点, 即上游各采样点抗生素浓度值差异较大, 下游各采样点抗生素污染程度较统一.

图 3 瓯江流域不同采样点抗生素检测情况 Fig. 3 Antibiotic detection at different sampling sites in Oujiang River Basin

瓯江流域上游段(采样点H1~H11)主要分布于龙泉市云和县、遂昌县和丽水市缙云县等地, 基本在山谷中穿行.抗生素总浓度水平为:H6 > H3 > H9 > H5 > H1 > H8 > H7 > H10 > H4 > H11 > H2.采样点H6显现出异常的高浓度(累计浓度值为316.86 ng·L-1), 且是唯一检测出DOC和FLU的采样点.该点位于遂昌县, 遂昌县将畜牧业作为主导产业之一, 有多个生猪、石蛙、鱼类养殖场, DOC和FLU可用于畜禽类、鱼类、虾蟹类疾病的治疗[64], 说明这两种抗生素被大量使用.其次为采样点H3(累计浓度值为159.5 ng·L-1), 该点位于丽水市云和县, 居住人口十分密集, 其OFL检出浓度达到了98.20 ng·L-1, 是所有抗生素检出浓度中的最大值, 也侧面反映了OFL作为人类主要用药的广泛性.采样点H2位于云和县紧水滩水库, 地属云和县胡仙宫景区, 该点各类抗生素浓度均为0, 说明其周边环境受到较好的保护.瓯江流域中下游段(采样点H12~H20)主要集中在温州市区, 途经瓯海区、鹿城区和龙湾区.抗生素总浓度水平为:H18 > H16 > H15 > H19 > H12 > H13 > H20 > H17 > H14.采样点H18(累计浓度值为146.71 ng·L-1)位于浙江高质量发展建设共同富裕示范区第二批试点地区之一龙湾区, 经济发达, 因临近入海口, 农林牧渔工业化规模较大, 抗生素污染程度较高.采样点H16和H15位置相近, 均属于内塘河网, 抗生素总浓度相当, 人口活动较为频繁.

2.3 抗生素风险评价 2.3.1 生态风险评价

根据各抗生素浓度检测结果, 参考最大检出浓度和检出率以及水生生物毒性敏感数据(表 2), 选择具有代表性的8种抗生素(涵盖四大类别), 基于瓯江流域采样点所测得到的抗生素浓度最大值, 计算得到的生态风险商值分布如图 4.从中可以看出, 对于抗生素的单一毒性, 5种抗生素(SPD、SCP、FLU、FLE和DOC)RQ值小于0.1, 属于低风险或无风险水平;3种抗生素(OFL、ENR和LIN)RQ值大于0.1, 属于中风险或高风险水平.OFL在4个采样点有高风险, 风险商值为3.1~8.7.存在中高风险隐患的有H3、H19、H18、H16、H6和H9这6个采样点, 占28.6%.采样点H6中2种类别的抗生素具有高风险, 这是由于这2种类别抗生素含量较高, 同时PNEC值较低, 所以计算得到的风险商值较高, 需要加强防范.采样点H3、H18、H6和H9的OFL具有高风险, 均处于人口密集聚集地.

图 4 生态风险商值分布 Fig. 4 Ecological risk quotient distribution

2.3.2 健康风险评价

为了更好地评价瓯江流域表层水体中抗生素对人体的健康风险水平, 结合不同抗生素的ADI值(表 4), 选取6种抗生素最大检出浓度作为评价浓度, 计算得到人体健康风险商值分布如图 5.从中可知, 通过饮水途径, 成人和儿童的RQH值分别处于1.97×10-5~1×10-3和1.78×10-5~3.4×10-4之间, 均小于0.01, 表明当前瓯江流域水体抗生素对人体健康无风险.RQH值整体呈现出成人高于儿童, 同一年龄段中男性高于女性的趋势.但由于抗生素在人体内具有累积作用, 因此其长期潜在风险仍不可忽视.

图 5 人体健康风险商值分布 Fig. 5 Human health risk quotient distribution

3 讨论 3.1 瓯江流域水体抗生素与国内外河流对比分析

表 6可知, 与国内外河流抗生素检出浓度相比, 瓯江流域DOC检出浓度平均值和最大值均高于长江南京段、黄河流域和锦江流域.DOC作为典型兽用药, 因价格低和使用方便是我国养殖业中使用量最大的广谱抗生素之一, 温州市皮革产业享誉全球, 好的皮革离不开畜牧业的支撑, 因此DOC在畜牧业发达的地区检出量明显高于其他地区, 这与王成贤等[65]的研究结果一致;SPD检出浓度平均值略高于环渤海典型河流, 低于珠江流域(广州段), 可能是由于磺胺类抗生素水溶性较好, 南方雨水多, 无法被代谢的SPD极易进入水环境中[66~68], 有研究表明, 珠江三角洲在中国58个河流流域中, 抗生素的排放密度最高[69].瓯江流域OFL检出浓度平均值高于长江南京段、环渤海典型河流、江西锦江和日本卡图拉河, 低于珠江流域和黄河流域.可以看到的是国内外主要流域中均检测出OFL, 珠江流域OFL浓度最大值达到了703.4 ng·L-1(浓度平均值为89.10 ng·L-1[70], 检出率100%, 是水环境中主要的抗生素污染物之一, 这说明OFL的使用情况及治理方式值得关注.ENR的检出浓度最大值均高于长江、黄河和环渤海等典型流域, 美国FDA已于2005年宣布禁止用于治疗家禽细菌感染的抗菌药物ENR的销售和使用[71], 而我国多地被报道水产动物ENR不符合食品安全国家标准规定.LIN浓度平均值与珠江流域相近.

表 6 国内外河流抗生素浓度及检出率1) Table 6 Antibiotic concentration and detection rate in domestic and foreign rivers

通过以上对比可以得出, 瓯江流域水体中DOC、OFL和LIN等抗生素检出浓度高于一些国内流域, 相对而言, 本研究中瓯江流域水体抗生素总浓度属于中下等水平.

3.2 瓯江流域水体抗生素污染来源分析

图 3可知, 欧江流域水体抗生素污染空间分异性较大, 以点状污染为主, 区域性污染较少.在12种被检出的抗生素中, 上游包括10种, 下游包括9种, 重合检出7种.从抗生素总浓度来看, 采样点H6累计浓度值达到316.86 ng·L-1, 经环境调查发现, 该点位于松阴溪遂昌县段, 附近即为卫生室, 医疗药物残留的排放使得该点抗生素浓度远超其它采样点, 另外该点附近分布有多个产品检测中心, 这也是导致瓯江上游抗生素浓度平均值大于中下游浓度平均值的主要原因.

就检出浓度而言, 抗生素污染值最大的为OFL(累计浓度249.8 ng·L-1)和LIN(累计浓度224.3 ng·L-1), 就检出率而言, 检出率最高的前3种分别为LIN、SPD和DIF.检出浓度值最大的OFL主要为医疗用药[81], 具有最大浓度值的采样点为H3, 位于居住人口十分密集的丽水市云和县, 可以认为来源为医疗废水的排放.上游抗生素总浓度值> 100 ng·L-1的采样点分别为H3和H6, 环境调查发现, 其主要污染原因为医疗行业、郊区畜牧养殖行业排放的污水无法被完全处理, 这与鄱阳湖流域[82]和沱江流域[83]等地情况相似.下游抗生素总浓度值> 100 ng·L-1的采样点为H18, 其主要污染原因为经济产业发达和人口活动密集, 导致环境质量发生变化.同时具有较高检出浓度和检出率的LIN, 可用作治疗人类各种感染[84], 也是众多养猪场的备用药, 无法被人体和动物完全吸收的LIN以各种形式被排至水环境中, 而无法被污水处理厂处理完全的一部分将再次进入人与动物体内, 这也是抗性基因产生的原因之一[85~89].瓯江流域LIN的检出程度说明其用途广泛, 且使用相对频繁, 进一步可以认为人口活动以及家禽/鱼类的养殖活动是该地区主要污染来源之一.

从流域上下游抗生素种类也可以佐证人口活动范围和产业布局对污染的影响.例如, 上游检出的SCP和DOC在中下游未检出, 这两类均为家禽或兽用药, 在经济发达及工业发展的中下游区域用量逐渐减少, 王若男等[90]的研究也表明, 农业活动对于某些抗生素污染的空间分布起十分重要的影响.相反, 主要为人类用药的DOF和MOX[91]在中下游检出、上游未检出, 充分说明流域上游以郊区畜牧业和养殖业为主, 中下游以金融、经济和旅游业为主.通过环境调查也发现, 流域上游遍布各类皮革制造基地, 涵盖养殖、加工及生产等系列环节.采样点H14、H15和H16同位于贯穿城区的内塘河网, H15和H16两个采样点累计浓度居高, H14却极低, 从地理位置上看, 采样点H14相对来说位于郊区地带, 而H15位于中心地带, 生活和工业等污水长期大量直排入河, 使得河道水质恶化.

水电站的建设对水质污染程度也有一定影响, 由于瓯江上游的地势起伏较剧烈, 有开发水电的优势, 位于其上游的紧水滩水电站是流域内规模最大的电站, 有研究表明, 水电站的建设对水流的最大影响是使得水流流速变缓, 自净能力减弱, 这可能也是上游抗生素污染程度参差的原因之一[92, 93].

4 结论

(1)对瓯江流域20个地表水采样点进行测定分析, 6类35种抗生素中共检测出4类12种, 检出率最高的是LIN(90.48%), 其次是SPD(38.10%), 其余抗生素检出率均低于30%.浓度平均值最大的是OFL(12.49 ng·L-1), 其次是LIN(11.08 ng·L-1), 其余抗生素浓度的平均值较低.变异系数普遍大于100%, 具有较大的空间分异性.

(2)瓯江流域抗生素上游浓度平均值(54.39 ng·L-1) > 中下游浓度平均值(46.64 ng·L-1), 整体抗生素污染水平并不高, 局部地区出现点状污染现象.在学校、医院和养殖场等人口密集场所, 以及郊区畜牧养殖业所处地OFL和LIN出现较高浓度值, 需要对抗生素的使用加强管控以及对污水处理系统进行优化.流域内上游各采样点抗生素浓度值差异较大, 中下游各采样点抗生素污染程度较统一, 这与人口分布、经济状况和产业结构息息相关.

(3)生态风险评价表明, 瓯江流域检出抗生素中3种抗生素单一毒性具有中风险或高风险水平, 5种抗生素属于低风险或无风险水平.高风险采样点均位于人口密集聚集地, 说明人类活动对流域环境产生的影响较大.健康风险评价表明, 成人和儿童的RQH值均小于0.01, 说明瓯江流域水体抗生素通过饮水途径对人体健康无风险, 但抗生素长期累积作用产生的危害仍不可忽视.

参考文献
[1] 陈嘉瑜, 苏志国, 姚鹏城, 等. 废水排放对近海环境中抗生素抗性基因和微生物群落的影响[J]. 环境科学, 2022, 43(9): 4616-4624.
Chen J Y, Su Z G, Yao P C, et al. Effects of wastewater discharge on antibiotic resistance genes and microbial community in a coastal area[J]. Environmental Science, 2022, 43(9): 4616-4624.
[2] 秦荣, 喻庆国, 刘振亚, 等. 人类活动影响下的高原湿地四环素类抗生素抗性基因赋存与微生物群落共现性[J]. 环境科学, 2023, 44(1): 169-179.
Qin R, Yu Q G, Liu Z Y, et al. Co-occurrence of tetracycline antibiotic resistance genes and microbial communities in plateau wetlands under the influence of human activities[J]. Environmental Science, 2023, 44(1): 169-179.
[3] Dong D M, Zhang L W, Liu S, et al. Antibiotics in water and sediments from Liao River in Jilin Province, China: Occurrence, distribution, and risk assessment[J]. Environmental Earth Sciences, 2016, 75(16). DOI:10.1007/s12665-016-6008-4
[4] Liang X M, Chen B W, Nie X P, et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China[J]. Chemosphere, 2013, 92(11): 1410-1416. DOI:10.1016/j.chemosphere.2013.03.044
[5] 剧泽佳, 付雨, 赵鑫宇, 等. 喹诺酮类抗生素在城市典型水环境中的分配系数及其主要环境影响因子[J]. 环境科学, 2022, 43(9): 4543-4555.
Ju Z J, Fu Y, Zhao X Y, et al. Distribution coefficient of QNs in urban typical water and its main environmental influencing factors[J]. Environmental Science, 2022, 43(9): 4543-4555.
[6] Zhang B, Xu L, Hu Q P, et al. Occurrence, spatiotemporal distribution and potential ecological risks of antibiotics in Dongting Lake, China[J]. Environmental Monitoring and Assessment, 2020, 192(12). DOI:10.1007/s10661-020-08761-w
[7] 王晓娟, 年夫照, 夏运生, 等. 抗生素使用现状及其在生态环境系统的行为研究进展[J]. 中国土壤与肥料, 2020(6): 286-292.
Wang X J, Nian F Z, Xia Y S, et al. Current status of antibiotic use and its behavior in ecological system[J]. Soils and Fertilizers Sciences in China, 2020(6): 286-292.
[8] 丁剑楠, 刘舒娇, 邹杰明, 等. 太湖表层水体典型抗生素时空分布和生态风险评价[J]. 环境科学, 2021, 42(4): 1811-1819.
Ding J N, Liu S J, Zou J M, et al. Spatiotemporal distributions and ecological risk assessments of typical antibiotics in surface water of Taihu Lake[J]. Environmental Science, 2021, 42(4): 1811-1819.
[9] Li S, Liu Y, Wu Y, et al. Antibiotics in global rivers[J]. National Science Open, 2022, 1(2): 20220029. DOI:10.1360/nso/20220029
[10] Huang F Y, Zou S Z, Deng D D, et al. Antibiotics in a typical karst river system in China: spatiotemporal variation and environmental risks[J]. Science of the Total Environment, 2019, 650: 1348-1355. DOI:10.1016/j.scitotenv.2018.09.131
[11] Valdés M E, Santos L H M L M, Castro M C R, et al. Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA)[J]. Environmental Pollution, 2021, 269. DOI:10.1016/j.envpol.2020.116133
[12] Liang Z S, Yu Y, Ye Z K, et al. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River estuary and their exposure risk to human[J]. Environment International, 2020, 143. DOI:10.1016/j.envint.2020.105934
[13] Singh R, Singh A P, Kumar S, et al. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies[J]. Journal of Cleaner Production, 2019, 234: 1484-1505. DOI:10.1016/j.jclepro.2019.06.243
[14] Wang C, Zhao Y P, Liu S, et al. Contamination, distribution, and risk assessment of antibiotics in the urban surface water of the Pearl River in Guangzhou, South China[J]. Environmental Monitoring and Assessment, 2021, 193(2). DOI:10.1016/j.envpol.2019.113365
[15] Zhang G D, Lu S Y, Wang Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113365
[16] 李玉琼, 童蕾, 严涵, 等. 河水-地下水交互带沉积物中抗生素和代谢产物提取方法优化及其分布特征[J]. 环境科学, 2021, 42(11): 5294-5302.
Li Y Q, Tong L, Yan H, et al. Optimization of extraction methods and distribution characteristics of antibiotics and metabolites in sediments of a river water-groundwater interaction zone[J]. Environmental Science, 2021, 42(11): 5294-5302.
[17] 徐秋鸿, 刘曙光, 娄厦, 等. 长江口近岸地区抗生素抗性基因与微生物群落分布特征[J]. 环境科学, 2023, 44(1): 158-168.
Xu Q H, Liu S G, Lou X, et al. Distributions of antibiotic resistance genes and microbial communities in the nearshore area of the Yangtze River estuary[J]. Environmental Science, 2023, 44(1): 158-168.
[18] Lei K, Zhu Y, Chen W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River catchment in China and ecotoxicological risk assessment[J]. Environment International, 2019, 130. DOI:10.1016/j.envint.2019.104919
[19] 陈慧, 剧泽佳, 赵鑫宇, 等. 石家庄地下水中喹诺酮类抗生素生态风险及其与环境因子的相关性[J]. 环境科学, 2022, 43(9): 4556-4565.
Chen H, Ju J Z, Zhao X Y, et al. Ecological risk assessment of quinolones antibiotics and the correlation analysis between QNs and physical-chemical parameters in groundwater, Shijiazhuang City[J]. Environmental Science, 2022, 43(9): 4556-4565.
[20] Li S, Shi W Z, Li H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River Estuary, South China[J]. Science of the Total Environment, 2018, 636: 1009-1019. DOI:10.1016/j.scitotenv.2018.04.358
[21] Li S, Shi W Z, Liu W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005–2016)[J]. Science of the Total Environment, 2018, 615: 906-917. DOI:10.1016/j.scitotenv.2017.09.328
[22] 蒋宝, 隋珊珊, 孙成一, 等. 北京市北运河水体中抗生素污染特征及风险评估[J]. 环境科学, 2023, 44(6): 3198-3205.
Jiang B, Sui S S, Sun C Y, et al. Pollution characteristics and risk assessment of antibiotics in Beiyun River Basin in Beijing[J]. Environmental Science, 2023, 44(6): 3198-3205.
[23] 吴天宇, 李江, 杨爱江, 等. 赤水河流域水体抗生素污染特征及风险评价[J]. 环境科学, 2022, 43(1): 210-219.
Wu T Y, Li J, Yang A J, et al. Characteristics and risk assessment of antibiotic contamination in Chishui River Basin, Guizhou Province, China[J]. Environmental Science, 2022, 43(1): 210-219.
[24] 赵富强, 高会, 张克玉, 等. 中国典型河流水域抗生素的赋存状况及风险评估研究[J]. 环境污染与防治, 2021, 43(1): 94-102.
Zhao F Q, Gao H, Zhang K Y, et al. Occurrence and risk assessment of antibiotics in typical river basins in China[J]. Environmental Pollution & Control, 2021, 43(1): 94-102.
[25] 马志凯, 刘亚林, 邱进坤. 瓯江河口水质评价及主要污染物入海通量分析[J]. 海洋开发与管理, 2021, 38(5): 92-96.
Ma Z K, Liu Y L, Qiu J K. Quality assessment of aquatic environment and fluxes of major pollutants to the Ou River Estuary[J]. Ocean Development and Management, 2021, 38(5): 92-96. DOI:10.3969/j.issn.1005-9857.2021.05.016
[26] 翁智雄, 程翠云, 章翼, 等. 瓯江流域(温州段)水污染物排污权交易比率研究[J]. 生态经济, 2017, 33(6): 184-190, 195.
Weng Z X, Cheng C Y, Zhang Y, et al. Study on the emissions trading ratio of water pollutants in the Oujiang River Basin (Wenzhou reach)[J]. Ecological Economy, 2017, 33(6): 184-190, 195.
[27] 王羡徕. 瓯江流域水电开发环境影响研究[D]. 杭州: 浙江工业大学, 2017.
Wang X L. Environmental impact evaluation of hydropower development in the Oujiang River system[D]. Hangzhou: Zhejiang University of Technology, 2017.
[28] 车继鲁, 余树全, 张鑫, 等. 瓯江下游流域河流沉积物重金属污染特征、来源及潜在生态风险评价[J]. 生态科学, 2017, 36(4): 176-184.
Che J L, Yu S Q, Zhang X, et al. Pollution characteristics, sources and potential ecological risk of heavy metals in surface sediment from the lower Ou River[J]. Ecological Science, 2017, 36(4): 176-184.
[29] 范浙朝. 温州市瓯江引水工程对下游河道水质影响分析[D]. 温州: 温州大学, 2021.
Fan Z C. Analysis on the influence of Oujiang River diversion project on water quality of downstream river in Wenzhou[D]. Wenzhou: Wenzhou University, 2021.
[30] 胡如意, 梅鹤, 商栩, 等. 强力治水背景下温瑞塘河主河道水质调查[J]. 浙江农业科学, 2020, 61(7): 1468-1471.
Hu R Y, Mei H, Shang X, et al. Investigation on water quality in mainstream of Wenruitang River under the background of intensive water pollution control[J]. Journal of Zhejiang agricultural sciences, 2020, 61(7): 1468-1471.
[31] 黄宏, 商栩, 梅琨, 等. 基于Monte Carlo模拟的河流水质评价——以温瑞塘河为例[J]. 中国环境科学, 2019, 39(5): 2210-2218.
Huang H, Shang X, Mei K, et al. River water quality assessment based on Monte Carlo simulation: A case study of Wen-rui Tang River[J]. China Environmental Science, 2019, 39(5): 2210-2218. DOI:10.3969/j.issn.1000-6923.2019.05.050
[32] Guérit I, Bocquené G, James A, et al. Environmental risk assessment: A critical approach of the European TGD in an in situ application[J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 291-300. DOI:10.1016/j.ecoenv.2008.01.020
[33] Qin L T, Pang X R, Zeng H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China[J]. Science of the Total Environment, 2020, 708. DOI:10.1016/j.scitotenv.2019.134552
[34] Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae[J]. Chemosphere, 2004, 57(11): 1733-1738. DOI:10.1016/j.chemosphere.2004.07.017
[35] Kim J, Park J, Kim P G, et al. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna [J]. Ecotoxicology, 2010, 19(4): 662-669. DOI:10.1007/s10646-009-0440-0
[36] 剧泽佳, 赵鑫宇, 陈慧, 等. 石家庄市水环境中喹诺酮类抗生素的空间分布特征与环境风险评估[J]. 环境科学学报, 2021, 41(12): 4919-4931.
Ju Z J, Zhao X Y, Chen H, et al. The characteristics of spatial distribution and environmental risk assessment for Quinolones antibiotics in the aquatic environment of Shijiazhuang city[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 4919-4931.
[37] 封丽, 程艳茹, 封雷, 等. 三峡库区主要水域典型抗生素分布及生态风险评估[J]. 环境科学研究, 2017, 30(7): 1031-1040.
Feng L, Chen Y R, Feng L, et al. Distribution of typical antibiotics and ecological risk assessment in main waters of Three Gorges Reservoir area[J]. Research of Environmental Sciences, 2017, 30(7): 1031-1040.
[38] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境科学出版社, 2013.
Ministry of Environmental Protection. Exposure factors handbook of Chinese population (Adults)[M]. Beijing: China Environmental Press, 2013.
[39] Shi W, Zhang F X, Zhang X W, et al. Identification of trace organic pollutants in freshwater sources in Eastern China and estimation of their associated human health risks[J]. Ecotoxicology, 2011, 20(5): 1099-1106. DOI:10.1007/s10646-011-0671-8
[40] Hanna N, Sun P, Sun Q, et al. Presence of antibiotic residues in various environmental compartments of Shandong Province in Eastern China: its potential for resistance development and ecological and human risk[J]. Environment International, 2018, 114: 131-142. DOI:10.1016/j.envint.2018.02.003
[41] Wang H X, Yang J Q, Yu X, et al. Exposure of adults to antibiotics in a Shanghai suburban area and health risk assessment: A biomonitoring-based study[J]. Environmental Science & Technology, 2018, 52(23): 13942-13950.
[42] Schwab B W, Hayes E P, Fiori J M, et al. Human pharmaceuticals in US surface waters: A human health risk assessment[J]. Regulatory Toxicology and Pharmacology, 2005, 42(3): 296-312. DOI:10.1016/j.yrtph.2005.05.005
[43] 李亮. 畜牧生产中常用的抗生素种类及科学使用[J]. 畜禽业, 2022, 33(9): 24-26.
[44] 宋圆梦, 赵波, 卢梦淇, 等. 白洋淀典型抗生素的源解析及其特定源风险评估[J]. 环境科学, 2023, 44(9): 4927-4940.
Song Y M, Zhao B, Lu M Q, et al. Source apportionment and source-specific risk of typical antibiotics in Baiyangdian Lake[J]. Environmental Science, 2023, 44(9): 4927-4940.
[45] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[46] 王振楠, 白默涵, 李晓晶, 等. 微生物降解四环素类抗生素的研究进展[J]. 农业环境科学学报, 2022, 41(12): 2779-2786.
Wang Z N, Bai M H, Li X J, et al. Research progress on the microbial degradation of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2022, 41(12): 2779-2786. DOI:10.11654/jaes.2022-1188
[47] Boxall A B A, Kolpin D W, Halling-Sørensen B, et al. Peer reviewed: are veterinary medicines causing environmental risks?[J]. Environmental Science & Technology, 2003, 37(15): 286A-294A.
[48] Stoob K, Singer H P, Mueller S R, et al. Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment[J]. Environmental Science & Technology, 2007, 41(21): 7349-7355.
[49] 程丹汝, 刘丙祥, 蒋忠冠, 等. 铜陵顺安河中不同种类鱼体内磺胺类抗生素的污染特征及健康风险评估[J]. 环境污染与防治, 2019, 41(5): 560-566.
Cheng D R, Liu B X, Jiang Z G, et al. Pollution characteristics and health risk assessment of sulfonamides in different fish from Shun 'an River in Tongling[J]. Environmental Pollution & Control, 2019, 41(5): 560-566.
[50] 郁晞, 沈燕, 邵未艾, 等. 2019—2021年淀山湖水源富营养化及磺胺类抗生素污染现况[J]. 环境卫生学杂志, 2022, 12(5): 378-382.
Yu X, Shen Y, Shao W A, et al. Survey on water eutrophication and sulfa antibiotics pollution of Dianshan Lake in Qingpu district of Shanghai between 2019 and 2021[J]. Journal of Environmental Hygiene, 2022, 12(5): 378-382.
[51] 林暾. 在线固相萃取-超高效液相色谱-三重四级杆质谱法测定地表水中22种磺胺类抗生素[J]. 广东化工, 2022, 49(19): 237-240.
Lin D. Determination of 22 sulfonamide antibiotics in surface water by on-line solid phase extraction with ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Guangdong Chemical Industry, 2022, 49(19): 237-240. DOI:10.3969/j.issn.1007-1865.2022.19.072
[52] 马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944-953.
Ma J S, Wang Z, Zhang Z Y, et al. Distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944-953.
[53] 宋冉冉, 国晓春, 卢少勇, 等. 东洞庭湖表层水体中抗生素及抗性基因的赋存特征与源分析[J]. 环境科学研究, 2021, 34(9): 2143-2153.
Song R R, Guo X C, Lu S Y, et al. Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of east Dongting Lake Basin[J]. Research of Environmental Sciences, 2021, 34(9): 2143-2153.
[54] 张姚姚, 杨再福, 汪涛, 等. 地表水中氟喹诺酮类抗生素的生态风险评价与水质基准研究[J]. 环境与健康杂志, 2018, 35(6): 531-535.
Zhang Y Y, Yang Z F, Wang T, et al. Risk assessment and water quality criteria of fluoroquinolones in surface water[J]. Journal of Environment and Health, 2018, 35(6): 531-535.
[55] Xu W H, Yan W, Li X D, et al. Antibiotics in riverine runoff of the Pearl River delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks[J]. Environmental Pollution, 2013, 182: 402-407. DOI:10.1016/j.envpol.2013.08.004
[56] Hu Y, Yan X, Shen Y, et al. Antibiotics in surface water and sediments from Hanjiang River, central China: Occurrence, behavior and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 157: 150-158. DOI:10.1016/j.ecoenv.2018.03.083
[57] 席峰, 颜立立, 潘春霖, 等. 鱼类恩诺沙星药物残留风险、成因与消减技术研究进展[J]. 食品安全质量检测学报, 2023, 14(5): 155-163.
Xi F, Yan L L, Pan C L, et al. Research progress on the risk of drug residues, formation cause and reduction technology of enrofloxacin in fish[J]. Journal of Food Safety and Quality, 2023, 14(5): 155-163.
[58] 苏一鸣, 王英刚, 蔺昕, 等. 低温条件下恩诺沙星的微生物降解研究[J]. 生态与农村环境学报, 2023, 39(10): 1332-1339.
Su Y M, Wang Y G, Lin X, et al. Study on microbial degradation of enrofloxacin at low temperatures[J]. Journal of Ecology and Rural Environment, 2023, 39(10): 1332-1339.
[59] 黄志英, 何军. 江西省淡水鱼虾中喹诺酮类药物残留量的调查分析[J]. 中国卫生检验杂志, 2022, 32(18): 2286-2288.
Huang Z Y, He J. Investigation and analysis of quinolone residues in freshwater fish and shrimp in Jiangxi Province[J]. Chinese Journal of Health Laboratory Technology, 2022, 32(18): 2286-2288.
[60] Fu H, Li X B, Wang J, et al. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling[J]. Journal of Environmental Sciences, 2017, 56: 145-152.
[61] 任省涛, 莫改敬, 陈红, 等. 一株林可霉素降解菌的筛选鉴定及其降解机制[J]. 微生物学通报, 2023, 50(3): 997-1009.
Ren S T, Mo G J, Chen H, et al. Isolation and working mechanism characterization of a lincomycin-degrading bacterial strain[J]. Microbiology China, 2023, 50(3): 997-1009.
[62] 杨柳. 水中林可霉素的强电离降解及其对斑马鱼胚胎生长发育影响研究[D]. 镇江: 江苏大学, 2022.
Yang L. Strong ionization degradation of lincomycin in water and its effects to zebrafish embryos growth[D]. Zhenjiang: Jiangsu University, 2022.
[63] 马允. 抗生素废水处理技术研究进展[J]. 山东化工, 2022, 51(15): 60-62.
Ma Y. Research progress of antibiotic wastewater treatment technology[J]. Shandong Chemical Industry, 2022, 51(15): 60-62.
[64] 郝红珊, 徐亚茹, 高月, 等. 珠江口海水养殖区水体、沉积物及水产品中抗生素的分布[J]. 北京大学学报(自然科学版), 2018, 54(5): 1077-1084.
Hao H S, Xu Y R, Gao Y, et al. Occurrence of antibiotics in water, sediments and seafood in aquaculture area of the Pearl River estuary[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(5): 1077-1084.
[65] 王成贤, 周丽. 畜禽粪便中四环类抗生素的残留和环境行为[J]. 广州化工, 2015, 43(11): 163-164.
Wang C X, Zhou L. Residues and environmental behaviors of tetracyclines in animal manure[J]. Guangzhou Chemical Industry, 2015, 43(11): 163-164.
[66] 张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022, 41(4): 1168-1181.
Zhang H J, Wang X X, Li Y. Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water[J]. Environmental Chemistry, 2022, 41(4): 1168-1181.
[67] 崔晓波, 曲文彦, 高文秀. 水体抗生素污染现状及藻类生态风险评价[J]. 山西农业科学, 2017, 45(12): 2056-2062.
Cui X B, Qu W Y, Gao W X. Pollution status of antibiotic in water and ecological risk assessment of algae[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(12): 2056-2062.
[68] Pan M, Wong C K C, Chu L M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River delta, Southern China[J]. Journal of Agricultural and Food Chemistry, 2014, 62(46): 11062-11069.
[69] Jia J, Guan YJ, Cheng M Q, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China[J]. Science of the Total Environment, 2018, 642: 1136-1144.
[70] Deng W J, Li N, Zheng H L, et al. Occurrence and risk assessment of antibiotics in river water in Hong Kong[J]. Ecotoxicology and Environmental Safety, 2016, 125: 121-127.
[71] Hanamoto S, Nakada N, Jürgens M D, et al. The different fate of antibiotics in the Thames River, UK, and the Katsura River, Japan[J]. Environmental Science and Pollution Research, 2018, 25(2): 1903-1913.
[72] 封梦娟, 张芹, 宋宁慧, 等. 长江南京段水源水中抗生素的赋存特征与风险评估[J]. 环境科学, 2019, 40(12): 5286-5293.
Feng M J, Zhang Q, Song N H, et al. Occurrence characteristics and risk assessment of antibiotics in source water of the Nanjing reach of the Yangtze River[J]. Environmental Science, 2019, 40(12): 5286-5293.
[73] Chen H Y, Jing L J, Teng Y G, et al. Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 2018, 618: 409-418.
[74] 周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险[J]. 生态环境学报, 2017, 26(6): 1034-1041.
Zhou Z H, Zhao J L, Wei X D, et al. Co-occurrence and ecological risk of antibiotics in surface water of Guangzhou section of Pearl River[J]. Ecology and Environment Sciences, 2017, 26(6): 1034-1041.
[75] 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价[J]. 环境科学, 2019, 40(5): 2094-2100.
Liu X, Wang Z, Wang X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments[J]. Environmental Science, 2019, 40(5): 2094-2100.
[76] 解伟峰, 李家科, 李莹, 等. 黄河流域水体沉积物中新兴污染物研究进展[J]. 环境科学与技术, 2022, 45(1): 227-236.
Xie W F, Li J K, Li Y, et al. Research progress of emerging pollutants in sediments of the Yellow River Basin[J]. Environmental Science & Technology, 2022, 45(1): 227-236.
[77] 赵富强, 高会, 李瑞婧, 等. 环渤海区域典型河流下游水体中抗生素赋存状况及风险评估[J]. 中国环境科学, 2022, 42(1): 109-118.
Zhao F Q, Gao H, Li R J, et al. Occurrences and risk assessment of antibiotics in water bodies of major rivers in Bohai Rim Basin[J]. China Environmental Science, 2022, 42(1): 109-118.
[78] 李佳乐, 王萌, 胡发旺, 等. 江西锦江流域抗生素污染特征与生态风险评价[J]. 环境科学, 2022, 43(8): 4064-4073.
Li J L, Wang M, Hu F W, et al. Antibiotic pollution characteristics and ecological risk assessment in Jinjiang River Basin, Jiangxi Province[J]. Environmental Science, 2022, 43(8): 4064-4073.
[79] Ngumba E, Gachanja A, Tuhkanen T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya[J]. Science of the Total Environment, 2016, 539: 206-213.
[80] Kim S C, Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices[J]. Environmental Science & Technology, 2007, 41(1): 50-57.
[81] 龚润强, 赵华珒, 高占啟, 等. 骆马湖及主要入湖河流表层水体中抗生素的赋存特征及风险评价[J]. 环境科学, 2022, 43(3): 1384-1393.
Gong R Q, Zhao H J, Gao Z Q, et al. Occurrence characteristics and risk assessment of antibiotics in the surface water of Luoma Lake and its main inflow rivers[J]. Environmental Science, 2022, 43(3): 1384-1393.
[82] 李佳乐, 王瑶, 董一慧, 等. 鄱阳湖流域袁河水体典型抗生素分布特征及生态风险评价[J]. 生态毒理学报, 2022, 17(4): 563-574.
Li J L, Wang Y, Dong Y H, et al. Distribution characteristics and ecological risk assessment of typical antibiotics in Yuanhe River of Poyang Lake Basin[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 563-574.
[83] 向省维, 巫明毫, 张力, 等. 沱江流域水体抗生素残留对微生物多样性的影响及生态风险评估[J]. 中国测试, 2023, 49(2): 72-79.
Xiang S W, Wu M H, Zhang L, et al. Effects of antibiotic residues on microbial diversity and ecological risk assessment in Tuojiang River[J]. China Measurement & Test, 2023, 49(2): 72-79.
[84] 李柏林, 张贺, 王俊, 等. 长江武汉段水源地典型抗生素及抗性基因污染特征与生态风险评价[J]. 环境科学, 2023, 44(4): 2032-2039.
Li B L, Zhang H, Wang J, et al. Pollution characteristics and risk assessment of antibiotics and resistance genes in different water sources in the Wuhan section of the Yangtze River[J]. Environmental Science, 2023, 44(4): 2032-2039.
[85] 李金梅, 梁威, 张洪勋, 等. 典型淡水环境中抗生素抗性基因的分布及其溯源[J]. 安全与环境学报, 2021, 21(5): 2329-2336.
Li J M, Liang W, Zhang H X, et al. Distribution and origin of antibiotic resistance genes in typical freshwater environments[J]. Journal of Safety and Environment, 2021, 21(5): 2329-2336.
[86] 李佳琳, 巨龙, 崔梦, 等. 磺胺类抗生素的污染现状与去除技术研究进展[J]. 安徽农业科学, 2021, 49(21): 27-32.
Li J L, Ju L, Cui M, et al. Status of sulfonamides pollution and research progress of removal technology[J]. Journal of Anhui Agricultural Sciences, 2021, 49(21): 27-32.
[87] Liu X, Steele J C, Meng X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169.
[88] Zhou L J, Ying G G, Zhao J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China[J]. Environmental Pollution, 2011, 159(7): 1877-1885.
[89] Wei Y M, Zhang Y, Xu J, et al. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry[J]. Frontiers of Environmental Science & Engineering, 2014, 8(3): 357-371.
[90] 王若男, 曹阳, 高超, 等. 沱江干流抗生素污染的时空变化和生态风险评估[J]. 环境化学, 2021, 40(8): 2505-2514.
Wang R N, Cao Y, Gao C, et al. Spatial and seasonal variation of antibiotics and their associated ecological risk in Tuojiang River[J]. Environmental Chemistry, 2021, 40(8): 2505-2514.
[91] 王璠, 刘彬, 郭丽. 武汉市东湖抗生素污染现状及生态风险评估[J]. 环境监控与预警, 2022, 14(5): 176-182.
Wang P, Liu B, Guo L. The pollution status and ecological risk assessment of antibiotics of east lake in Wuhan[J]. Environmental Monitoring and Forewarning, 2022, 14(5): 176-182.
[92] Pan M, Chu L M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River delta region, Southern China[J]. Science of the Total Environment, 2018, 624: 145-152.
[93] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5): 1827-1833.