环境科学  2023, Vol. 44 Issue (12): 6894-6908   PDF    
中国典型抗生素在环境介质中的污染特征与生态风险评价
陈丽红, 曹莹, 李强, 孟甜, 张森     
中国环境科学研究院环境检测与实验中心, 北京 100012
摘要: 通过收集国内各地区水体、沉积物和土壤中抗生素的最新污染数据,试图从全国尺度范围进行分析,以反映我国环境中抗生素的污染状况,并利用风险商值(RQs)评估抗生素的生态风险.结果表明,我国各地水体、沉积物和土壤均受到不同程度的抗生素污染,南方地区水体污染较为严重,而西部地区则较轻.生态风险评价结果表明,我国水体中红霉素、罗红霉素、四环素、金霉素、磺胺甲唑和诺氟沙星是高风险污染物,占比为20.9%,主要分布在山东、湖北、浙江、四川、广东、海南、江苏和江西等地;江河沉积物中,诺氟沙星是高风险污染物,占比为11.1%,主要分布在黄河、海河、辽河和珠江等地;养殖场沉积物中,四环素、土霉素、金霉素和诺氟沙星是高风险污染物,占比高达72.5%;土壤中,四环素和金霉素是高风险污染物,占比为28.6%,主要分布在辽宁、四川、天津和山东等地,以上高风险区域应引起相关部门的重视.研究结果可为我国抗生素的污染防治提供科学依据和数据支撑.
关键词: 抗生素      污染特征      生态风险评价      中国      环境介质     
Pollution Characteristics and Ecological Risk Assessment of Typical Antibiotics in Environmental Media in China
CHEN Li-hong , CAO Ying , LI Qiang , MENG Tian , ZHANG Sen     
Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: To investigate the environmental pollution status of antibiotics in China on a national scale, a large number of the latest pollution data of antibiotics in water, sediment, and soil were collected, and ecological risks of antibiotics were evaluated using the risk quotients (RQs). The results showed that water, sediments, and soils in different parts of China were contaminated with antibiotics to varying degrees; antibiotics pollution of water bodies was relatively severe in the south of China but moderate in the west. The ecological risk assessment revealed that erythromycin, roxithromycin, tetracycline, colistin, sulfamethoxazole, and norfloxacin were high-risk pollutants in water, accounting for 20.9% of the total antibiotics, and were mainly distributed in Shandong, Hubei, Zhejiang, Sichuan, Guangdong, Hainan, Jiangsu, and Jiangxi provinces. Furthermore, norfloxacin was identified as the primary high-risk pollutant in river sediments, such as those of the Yellow River, Haihe River, Liaohe River, and Pearl River, accounting for 11.11% of all antibiotics. In contrast, tetracycline, tylosin, colistin, and norfloxacin were the main high-risk pollutants in aquaculture sediments, accounting for 72.5% of the total. In soil, tetracycline and colistin contents comprised a high ratio of the total amount (up to 28.6%); these were mainly distributed in Liaoning, Sichuan, Tianjin, and Shandong provinces. Relevant authorities should focus on the above-mentioned high-risk regions. This study provides sufficient scientific basis and data support for preventing and controlling antibiotic pollution in China.
Key words: antibiotics      pollution characteristics      ecological risk assessment      China      environmental media     

抗生素作为一种新兴污染物一直是国内外的研究热点[1].随着人们生活水平的不断提高, 抗生素被广泛应用于人类医疗和畜禽、水产养殖中.由于人或动物在服用抗生素后, 不能完全吸收, 所以导致大量的抗生素以原态和代谢物状态排入环境中造成污染.抗生素在对环境产生污染的同时, 也会导致病原微生物产生耐药性, 对生态环境及人类健康带来严重威胁.抗生素除了能引起细菌的耐药性, 对其他生物也可能产生潜在毒性[2~4].

据报道, 大多数国家和地区的环境介质(水体、沉积物及土壤)中均检测到了抗生素的残留[5~13]. 2022年发布的《新污染物治理行动方案》指出要加强对环境介质中抗生素的监测和治理[14].目前, 国内外科研工作者对于抗生素的污染调查和研究主要着重于部分地区、部分污染物和环境介质.李柏林等[15]对长江武汉段水源地不同区域采集样品, 分析典型抗生素和抗性基因(ARGs) 的分布特征和相关性以及潜在生态风险.李富娟等[16]分析了宁夏第三排水沟中各类抗生素的污染水平, 探讨其浓度与水体指标的相关性, 并进行生态风险评估.张小红等[17]分析了银川市农田土壤中土霉素、四环素、金霉素和强力霉素的污染特征及空间分布状况, 并评价了其生态风险.王璠等[18]研究了武汉市东湖抗生素污染现状及生态风险评估.但全面分析抗生素在水体、沉积物和土壤中的污染特征的研究还未见报道, 本文重点探讨了我国典型抗生素在环境介质中的污染特征与生态风险评估, 以期为我国环境介质中抗生素指标质量基准或管理标准的建立及抗生素指标环境污染的监管工作提供科学依据.

1 材料与方法 1.1 数据来源

本研究数据来源于已发表的文献, 共收集全国170个水体(包括地表水和污水)、106个沉积物(包括江河及养殖场沉积物)和119个土壤环境中的抗生素暴露浓度数据.共收集4类抗生素数据, 包括大环内酯类(红霉素、罗红霉素、克拉霉素)、四环素类(四环素、土霉素、金霉素)、磺胺类(磺胺甲唑)和喹诺酮类(诺氟沙星、恩诺沙星).筛选原则为:①调查范围涉及我国多个省份和地区; ②检测数据均为全量, 水体中抗生素暴露浓度单位为ng·L-1, 沉积物和土壤中抗生素暴露含量为mg·kg-1; ③数据多数来源于近5年时间范围内环境介质中抗生素暴露含量数据; ④抗生素的分析检测为国家标准方法或美国环保署标准方法.

1.2 生态风险评估

根据欧盟风险评价技术指导文件(technical guidance document on risk assessment, TGD)[19], 本研究采用风险商值(risk quotients, RQs)法评估我国环境介质中典型抗生素的潜在生态风险, 其计算公式为:

(1)

式中, MEC为环境暴露浓度; PNEC为预测无效应浓度.

本研究中水体、沉积物、土壤环境中典型抗生素的暴露含量来源于文献, PNEC值为本课题组前期研究推导, 各种抗生素在不同环境介质中的PNEC值见表 1, PNEC值的具体推导方法见文献[20].根据RQs分类方法来评估生态等级, RQs<0.01为无风险; 0.01≤RQs<0.1为低风险; 0.1≤RQs<1为中风险; RQs≥1为高风险[21].

表 1 抗生素在不同环境介质中的PNEC值1) Table 1 PNEC values of antibiotics in different environmental media

1.3 统计分析

本研究使用ArcGIS绘制抗生素调查点位分布, 利用Origin软件对抗生素的分布情况进行绘图, 用SPSS 23.0对抗生素数据进行分析.

2 结果与讨论 2.1 水体、沉积物和土壤中典型抗生素污染特征 2.1.1 水体中典型抗生素污染特征

我国部分地区水体中抗生素的浓度最大值统计见图 1. 4类抗生素在水体中均有不同程度检出, 其中四环素、金霉素和磺胺甲唑检出率均为100%;红霉素、罗红霉素、克拉霉素、土霉素和诺氟沙星的检出率均高于90%.结果表明, 我国大部分地区水体中均存在不同程度的抗生素残留, 其中四环素类和磺胺类抗生素的赋存较为普遍, 可能是由于水体中的磺胺类抗生素具有较强的稳定性和持久性, 在水体中不易降解, 故其在水体中检出率较高.四环素类抗生素是一类广谱抗生素, 被广泛应用于人类和畜牧业的医疗中, 这些药物随人类和动物的排泄物被排放到水环境中, 而水处理工艺无法完全去除四环素类抗生素, 使其在水中残留, 导致水中四环素类抗生素检出浓度较高.

数据整理自已有研究:红霉素[24~33], 罗红霉素[24~27, 29~32, 34~39], 克拉霉素[27, 31, 35, 39], 四环素[24~27, 32, 36, 38, 40~47], 土霉素[24~27, 32, 36, 38, 40~43, 45, 48~50], 金霉素[24~26, 30, 32, 36, 44~46], 磺胺甲[24~26, 29~31, 33, 35, 37, 44~45, 49, 51~61], 诺氟沙星[24, 26~30, 32, 33, 35, 36, 38, 41~45, 48, 50, 52~54, 57~58, 62~67]; a1.井水, a2.河水, a3.出水, a4.排放, a5.养殖水, a6.湖水; b1.河水, b2.井水, b3.养殖水, b4.湖水, b5.出水, b6.排放, b7.江水; c1.河水, c2.养殖水, c3.出水, c4.排放, c5.江水; d1.湖水, d2.出水, d3.河水, d4.养殖水, d5.井水, d6.排放, d7.江水, d8.水库; e1.河水, e2.井水, e3.养殖水, e4.湖水, e5.出水, e6.排放, e7.江水, e8.水库; f1.江河流域, f2.井水, f3.养殖水, f4.湖水, f5.出水, f6.入海口; g1.水产养殖场, g2.养猪场, g3.进出水, g4.河水, g5.湖水, g6.江水, g7.水库, g8.垃圾填埋场周边, g9.其他; h1.排污, h2.直接排放, h3.湖库, h4.出水, h5.进水, h6.养殖, h7.流域, h8.江河, h9.井水, h10.废水 图 1 我国部分地区水体中抗生素浓度最大值统计 Fig. 1 Statistics of the maximum antibiotic content in water bodies in some regions of China

在各种水体的利用类型中, 红霉素、罗红霉素、克拉霉素、四环素、金霉素和磺胺甲唑浓度在出水中最高, 土霉素浓度在养殖水中最高, 诺氟沙星浓度在排放水中最高, 其中, 污水处理厂出水中, 红霉素[25]、罗红霉素[25]、克拉霉素[27]、四环素[25]、金霉素[25]和磺胺甲[25]的浓度分别高达2.05×103、594、42.3、1.10×105、1.10×103和4.00×103 ng·L-1.污水中抗生素的调查数据主要来自污水处理厂出水、排放及养殖水等.可见, 污水是水体抗生素的主要积聚来源, 对于污水处理厂, 可能是由于汇聚各地区的污水, 居民在生活中会涉及使用各种抗生素, 抗生素在污水中进行累加, 使得抗生素平均检出浓度较高, 且检出的抗生素种类较多.其中, 污水处理厂出水的抗生素浓度平均值为88.5 ng·L-1, 排放的浓度平均值为44.6 ng·L-1.通过对比污水处理厂进出水中抗生素的浓度可以发现, 污水处理厂对于抗生素有一定的处理能力.

对于水体中各种抗生素的浓度最大值的统计均值, 红霉素超过100 ng·L-1的有出水、河水和养殖水, 而井水中的浓度则相对较低; 罗红霉素超过100 ng·L-1的有出水和河水, 而井水中的浓度则相对较低; 克拉霉素无超过200 ng·L-1的水体; 四环素超过115 ng·L-1的有江水, 而养殖水中的四环素浓度则相对较低; 土霉素超过4.93×103 ng·L-1的有养殖水, 而井水中的土霉素浓度则相对较低; 金霉素超过240 ng·L-1的有出水和入海口, 而井水及部分养殖水中的金霉素浓度则相对较低; 磺胺甲唑超过7.50 ng·L-1的有出水、湖水、河水、水产养殖水和江水, 而养猪场排污水中的浓度则相对较低.诺氟沙星超过113 ng·L-1的有直接排放水、进水、江河水和养殖水, 而养猪场排污水中的浓度则相对较低.

8种抗生素的浓度平均值为208 ng·L-1.其中, 磺胺类、四环素类、喹诺酮类和大环内酯类的浓度平均值分别为483、228、134和29.4 ng·L-1.8种抗生素中, 罗红霉素残留浓度在0.350~169 ng·L-1范围之间, 浓度整体上较为稳定, 这可能是由于罗红霉素为大尺寸分子, 具有较强的疏水性, 其次是罗红霉素在水和沉积物间的分配系数差异过大, 造成了水体中罗红霉素浓度值波动较小.

2.1.2 沉积物中典型抗生素污染特征

沉积物调查点位中土霉素、金霉素、诺氟沙星和恩诺沙星的含量最大值统计见图 2, 其在沉积物中的含量范围分别为ND(未检出)~900、ND~347、ND~5.77和ND~0.360 mg·kg-1.经济发展水平、土地利用方式和人类活动强度因素等不同均可导致沉积物中抗生素含不同, 使得我国不同区域沉积物中抗生素污染程度存在一定的差异.例如:在调查的江河沉积物中, 抗生素含量平均值大小为:诺氟沙星(1.21 mg·kg-1)>土霉素(0.29 mg·kg-1)>恩诺沙星(0.06 mg·kg-1)>金霉素(0.04 mg·kg-1), 诺氟沙星是主要污染物.在各种养殖场沉积物中, 抗生素含量平均值大小为:土霉素(145.35 mg·kg-1)>金霉素(111.03 mg·kg-1)>诺氟沙星(0.39 mg·kg-1)>恩诺沙星(0.14 mg·kg-1), 土霉素和金霉素是主要污染物. 因此, 在调查的4种抗生素中, 江河沉积物主要污染物为诺氟沙星, 而养殖场沉积物主要污染物为土霉素及金霉素.综合长江三角洲[71]、白洋淀[62, 77]、苕溪[70]、大沽河[79]、黄河、海河、辽河[69]和珠江[68]等江河沉积物含量, 发现不同江河沉积物的诺氟沙星含量略有差别, 除海河(0.032~5.77 mg·kg-1)、白洋淀(0.049 4~1.14 mg·kg-1)和珠江(0.088~1.12 mg·kg-1)检出含量超过1 mg·kg-1外, 其余江河含量均低于1 mg·kg-1.在养殖场沉积物中, 土霉素含量大小为:水产养殖塘>养鸡场>养猪场, 而金霉素含量大小为:养猪场>养鸡场>水产养殖场.

数据整理自已有研究:土霉素[35, 68~76], 金霉素[69~71, 74~76], 诺氟沙星[62, 71~79], 恩诺沙星[35, 62, 69, 71, 75, 77, 79~80]; a1.养猪场, a2.水产养殖场, a3.养鸡场, a4.江河流域, a5.其他; b1.养猪场, b2.养鸡场, b3.江河流域, b4.其他养殖场; c1.养猪场, c2.养鸡场, c3.底泥, c4.江河流域, c5.污水; d1.养猪场, d2.沉积物, d3.底泥, d4.养鸡场, d5.江河流域, d6.畜禽废物, d7.废水 图 2 我国部分地区沉积物中抗生素含量最大值统计 Fig. 2 Statistics of the maximum antibiotic content in sediments in some regions of China

2.1.3 土壤中典型抗生素污染特征

土壤调查点位中四环素、土霉素和金霉素含量见表 2.在调查的土壤点位中, 金霉素质量分数最高, 范围为1.10% ~98.6%, 平均值为41.8%; 其次为土霉素, 质量分数范围分别为0.07% ~86.0%, 平均值为38.1%; 最后为四环素, 质量分数范围为0.19% ~65.0%, 平均值为20.1%.因此, 在3种四环素类抗生素中, 主要污染物为金霉素.

表 2 我国部分地区土壤中抗生素的含量1)/ng·g-1 Table 2 Antibiotic content in soil in some regions of China/ng·g-1

2.2 生态风险评价 2.2.1 我国部分地区水体中典型抗生素的生态风险评估

将我国部分地区水体中典型抗生素(红霉素、罗红霉素、克拉霉素、四环素、土霉素、金霉素、磺胺甲唑和诺氟沙星)的浓度与PNEC值(表 1)相比较.调查的水体分为地表水(江水、河水、湖泊、水库)和污水(污水处理厂出水、排放、养殖水).结果显示, 红霉素、罗红霉素、克拉霉素、四环素、土霉素和金霉素在地表水中的风险商值除大辽河(红霉素的RQs为1.69)、渭河关中段(红霉素的RQs为1.14)、黄浦江(四环素的RQs为3.83)和贡湖湾(四环素的RQs为16.1)外, 其余地表水的风险商值均未超过1, 表明这些抗生素在我国大部分地区地表水中处于可接受水平.所收集的大部分江河、湖库和流域中诺氟沙星的暴露浓度均远小于PNEC值, 但在部分点位中暴露浓度(大辽河表层水:ND~1.38×103 ng·L-1, 钱塘江杭州段:ND~508 ng·L-1, 贡湖湾:59.0~271 ng·L-1, 珠江广州段:117~251 ng·L-1, 珠江河口:ND~174 ng·L-1, 淮河入洪泽湖口:14.0~161 ng·L-1, 东源区水环境:ND~156 ng·L-1, 天津大沽排污河:0~136 ng·L-1, 青草沙水库:32.8~278 ng·L-1和北京温榆河流域:ND~199 ng·L-1)高于PNEC值, 风险商值大于1.磺胺甲唑在水体中的暴露浓度相对较高, 大部分点位的风险商值均大于1, 如海甸五西路河段(最大值1.20×103 ng·L-1)、东湖(933 ng·L-1)、金红玲公园人工湖(1.11×103 ng·L-1)、西湖(1.39×103 ng·L-1)、鸭尾溪(1.23×103 ng·L-1)和龙昆沟(859 ng·L-1), 以上点位的风险商值均大于100, 高磺胺类浓度可能会对水生生物和人体健康造成危害, 尤其值得关注.

为进一步表征抗生素的潜在生态风险, 使用ArcGIS绘制出抗生素在我国的RQs等级化分布, 结果见图 3.可以看出, 全国约75%的点位RQs值小于1, 生态风险等级属于无风险、低风险或中风险.高风险(RQs值大于1)的点位主要分布在山东、湖北、浙江、四川、广东、海南、江苏和江西等地.可见, 南方地区水体污染较为严重, 而西部地区则较轻.结合现状分析, 主要来源为医疗和畜禽养殖业废水的排放, 为人口活动密集和经济产业快速发展所导致.通过分析生态风险等级较高地区的抗生素的分布可知, 磺胺甲唑占据了主要的比重, 符合上述磺胺甲唑为水体中主要特征污染抗生素的结论.

基于自然资源部标准地图服务网站GS(2020)4619号标准地图制作, 底图无修改; 数据整理自文献[24~67]; STP为污水处理厂, DQE、DBE、DTE、DJE、DQ、DB和DT为调查点位 图 3 我国部分地区水体点位RQs等级化分布 Fig. 3 Distribution map of contaminated water RQs site in some regions of China

图 4所示, 风险商值热图中有4种抗生素对地表水表现为高风险, 分别是罗红霉素、四环素、磺胺甲唑和诺氟沙星, 整个研究区域内高风险点位占比情况为13.9%.除克拉霉素外, 其余7种抗生素对我国部分地表水相应敏感水生生物表现为中风险, 整个研究区域内中风险点位占比情况为32.3%.低风险和无风险点位占比分别为29.2%和24.6%.

1.北京温榆河, 2.半岛诸河, 3.小清河, 4.海河, 5.淮河, 6.淀山湖, 7.大辽河, 8.贡湖湾, 9.大通湖, 10.乌伦古湖, 11.博斯腾湖, 12.九龙江, 13.黄浦江; 白色填充表示无数据 图 4 地表水中抗生素的风险商 Fig. 4 RQs of antibiotics in surface water

图 5所示, 有6种抗生素对污水表现为高风险, 分别是红霉素、罗红霉素、四环素、金霉素、磺胺甲唑和诺氟沙星, 整个研究区域内高风险点位占比情况为26.2%.中风险、低风险和无风险点位占比分别为45.2%、17.8%和10.8%.

1.清河STP出水DQE, 2.北小河STP出水DBE, 3.高碑店STP出水DTE, 4.酒仙桥STP出水DJE, 5.清河直接排放样DQ, 6.坝河直接排放样DB, 7.通惠河直接排放样DT, 8.环鄱阳湖水产养殖区, 9.广州污水处理厂出水, 10.渤海湾养鱼塘, 11.高淳中华绒螯蟹养殖塘, 12.鄱阳湖区养猪场排污渠, 13.杭州C处养猪场污水, 14.北方地区陆源入海口, 15.广州污水处理厂进水, 16.中山三角镇水产养殖地, 17.天津大沽排污河, 18.杭州生活污水出水, 19.广州生活污水出水, 20.香港生活污水出水; STP为污水处理厂, DQE、DBE、DTE、DJE、DQ、DB和DT为调查点位; 白色填充表示无数据 图 5 污水中抗生素的风险商 Fig. 5 RQs of antibiotics in sewage

2.2.2 我国部分地区沉积物中典型抗生素的生态风险评估

将我国部分地区各类型沉积物中典型抗生素(四环素、土霉素、金霉素、诺氟沙星和恩诺沙星)的含量与PNEC值(表 1)相比较, 沉积物中抗生素RQs的空间分布情况见图 6.结果表明, 江河流域的沉积物中四环素、土霉素、金霉素和恩诺沙星的含量均小于PNEC值, 其生态毒性风险均处于可接受水平.但诺氟沙星在6个江河中有4个沉积物的RQs>1.RQs值从大到小依次为:海河(64.6)>珠江(12.5)>辽河(1.97)>黄河(1.58).以上江河沉积物中高诺氟沙星含量可能会对底栖水生生物造成危害, 值得关注.

基于自然资源部标准地图服务网站GS(2020)4619号标准地图制作, 底图无修改; 数据整理自文献[68~80] 图 6 我国部分地区沉积物点位RQs等级化分布 Fig. 6 Distribution map of contaminated sediment RQs site in some regions of China

各类养殖场沉积物中四环素类抗生素的检出率相对较高, RQs平均值从大到小依次为:金霉素(564)>四环素(146)>土霉素(6.50)>诺氟沙星(4.17)>恩诺沙星(0.01).但不同沉积物类型中抗生素含量差异较大, 如猪场和鸡场沉积物中的金霉素风险商值均远大于1, 如新兴市簕竹镇养猪场金霉素含量为347 mg·kg-1, 是金霉素PNEC值的1.76×103倍, 表明我国部分地区养殖场沉积物环境中金霉素处于高含量水平.沉积物中高金霉素含量可能会存在潜在生态环境风险, 值得关注.

沉积物中抗生素RQs的分布情况见图 6, 结果表明, 全国约88.9%的点位江河沉积物RQs值小于1, 生态风险等级属于低风险、中风险或无风险.高风险的点位主要分布在黄河、海河、辽河和珠江, 这些地区沉积物中的主要污染物为诺氟沙星.而在养殖场沉积物中有72.5%的点位RQs值大于1, 主要污染物为金霉素.

图 7所示, 风险商值热图中只有诺氟沙星对江河沉积物表现为高风险, 占整个研究区域内点位的14.8%, 中风险、低风险和无风险点位分别占22.2%、44.4%和18.5%.而在养殖场沉积物中, 4种抗生素表现为高风险, 分别是四环素、土霉素、金霉素和诺氟沙星, 高风险、中风险、低风险和无风险点位占比分别为73.7%、3.95%、7.89%和14.7%.

1.长江三角洲, 2.苕溪, 3.黄河, 4.海河, 5.辽河, 6.珠江, 7.佛岗市龙山镇养猪场, 8.清远市石角镇养猪场, 9.广州增城市中新镇养猪场, 10.广州新塘镇养猪场, 11.从化市石岭镇养猪场, 12.三水市养猪场, 13.新兴市簕竹镇养猪场, 14.新丰市板岭镇养猪场, 15.东莞市横沥镇养猪场, 16.清远市莲塘镇养猪场, 17.乳源市龙南镇养猪场, 18.广州增城市福新镇养猪场, 19.广州增城市福和镇养猪场, 20.广州增城市广三保养猪场, 21.三水市养鸡场, 22.新兴市簕竹镇养鸡场; 白色填充表示无数据 图 7 沉积物中抗生素的风险商 Fig. 7 RQs of antibiotics in sediments

2.2.3 我国部分地区土壤中典型抗生素的生态风险评估

将我国部分地区土壤环境中抗生素的含量与PNEC值相比较, 土壤中抗生素RQs的分布情况见图 8.结果显示, 15个省份和区域中有4个省份的土壤中四环素RQs>1, RQs值由大到小依次为:辽宁(7.25)>四川(4.60)>天津(1.38)=山东(1.38). 8个省份(四川、辽宁、云南、天津、福建、北京、江苏和浙江)的土壤金霉素RQs>1.以上地区土壤存在潜在生态风险, 应当引起重视.在所有省份中, 土霉素的RQs值均小于1, 表明我国大部分地区土壤环境中土霉素处于可接受水平.图 8中显示我国土壤中主要污染物为金霉素.

基于自然资源部标准地图服务网站GS(2020)4619号标准地图制作, 底图无修改; 数据整理自文献[81~113] 图 8 我国部分地区土壤点位RQs等级化分布 Fig. 8 Distribution map of contaminated soil RQ sites in some regions of China

图 9所示, 四环素和金霉素对我国部分地区土壤表现为高风险, 占整个研究区域的28.6%, 中风险、低风险和无风险点位分别占33.3%、26.2%和11.9%.

1.北京, 2.天津, 3.辽宁, 4.河北, 5.山东, 6.上海, 7.江苏, 8.浙江, 9.福建, 10.云南, 11.江西, 12.四川, 13.广东, 14.珠江三角洲 图 9 土壤中抗生素的风险商 Fig. 9 RQs of antibiotics in soil

3 结论

(1) 从水体、沉积物、土壤的调查结果来看, 我国各地环境介质中不同程度地受到了抗生素的污染, 其中, 养殖场沉积物污染最严重.

(2) 空间分布特征结果表明, 南方地区水体污染较为严重, 而西部地区则较轻.结合现状分析, 主要来源为医疗和畜禽养殖业废水的排放, 人口活动密集和经济产业快速发展所导致.

(3) 生态风险评价结果表明我国水体中红霉素、罗红霉素、四环素、金霉素、磺胺甲唑和诺氟沙星是高风险污染物, 占比为20.9%, 主要分布在山东、湖北、浙江、四川、广东、海南、江苏和江西等地; 江河沉积物中, 诺氟沙星是高风险污染物, 占比为11.1%, 主要分布在黄河、海河、辽河和珠江等地; 养殖场沉积物中, 四环素、土霉素、金霉素和诺氟沙星是高风险污染物, 占比高达72.5%; 土壤中, 四环素和金霉素是高风险污染物, 占比为28.6%, 主要分布在辽宁、四川、天津和山东等地.这些高风险区域应引起相关部门的重视.该研究可为我国抗生素的污染防治提供科学依据和数据支撑.

(4) 需要进一步补充水体、沉积物和土壤中抗生素在国内其他区域的空间分布特征, 以形成抗生素的全覆盖空间分布特征, 为我国抗生素污染防控和管理提供精准数据支撑.

参考文献
[1] Peiris C, Gunatilake S R, Mlsna T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review[J]. Bioresource Technology, 2017, 246: 150-159. DOI:10.1016/j.biortech.2017.07.150
[2] 剧泽佳, 付雨, 赵鑫宇, 等. 喹诺酮类抗生素在城市典型水环境中的分配系数及其主要环境影响因子[J]. 环境科学, 2022, 43(9): 4543-4555.
Ju Z J, Fu Y, Zhao X Y, et al. Distribution coefficient of QNs in urban typical water and its main environmental influencing factors[J]. Environmental Science, 2022, 43(9): 4543-4555.
[3] Zhang B, Xu L, Hu Q P, et al. Occurrence, spatiotemporal distribution and potential ecological risks of antibiotics in Dongting Lake, China[J]. Environmental Monitoring and Assessment, 2020, 192(12). DOI:10.1007/s10661-020-08761-w
[4] 王晓娟, 年夫照, 夏运生, 等. 抗生素使用现状及其在生态环境系统的行为研究进展[J]. 中国土壤与肥料, 2020(6): 286-292.
Wang X J, Nian F Z, Xia Y S, et al. Current status of antibiotic use and its behavior in ecological system[J]. Soils and Fertilizers Sciences in China, 2020(6): 286-292.
[5] 李玉琼, 童蕾, 严涵, 等. 河水-地下水交互带沉积物中抗生素和代谢产物提取方法优化及其分布特征[J]. 环境科学, 2021, 42(11): 5294-5302.
Li Y Q, Tong L, Yan H, et al. Optimization of extraction methods and distribution characteristics of antibiotics and metabolites in sediments of a river water-groundwater interaction zone[J]. Environmental Science, 2021, 42(11): 5294-5302.
[6] 徐秋鸿, 刘曙光, 娄厦, 等. 长江口近岸地区抗生素抗性基因与微生物群落分布特征[J]. 环境科学, 2023, 44(1): 158-168.
Xu Q H, Liu S G, Lou S, et al. Distributions of antibiotic resistance genes and microbial communities in the nearshore area of the Yangtze River estuary[J]. Environmental Science, 2023, 44(1): 158-168.
[7] 陈慧, 剧泽佳, 赵鑫宇, 等. 石家庄地下水中喹诺酮类抗生素生态风险及其与环境因子的相关性[J]. 环境科学, 2022, 43(9): 4556-4565.
Chen H, Ju Z J, Zhao X Y, et al. Ecological risk assessment of quinolones antibiotics and the correlation analysis between QNs and physical-chemical parameters in groundwater, Shijiazhuang City[J]. Environmental Science, 2022, 43(9): 4556-4565.
[8] Wang C, Zhao Y P, Liu S, et al. Contamination, distribution, and risk assessment of antibiotics in the urban surface water of the Pearl River in Guangzhou, South China[J]. Environmental Monitoring and Assessment, 2021, 193(2). DOI:10.1007/S10661-021-08887-5
[9] 陈嘉瑜, 苏志国, 姚鹏城, 等. 废水排放对近海环境中抗生素抗性基因和微生物群落的影响[J]. 环境科学, 2022, 43(9): 4616-4624.
Chen J Y, Su Z G, Yao P C, et al. Effects of wastewater discharge on antibiotic resistance genes and microbial community in a coastal area[J]. Environmental Science, 2022, 43(9): 4616-4624. DOI:10.13227/j.hjkx.202112272
[10] 秦荣, 喻庆国, 刘振亚, 等. 人类活动影响下的高原湿地四环素类抗生素抗性基因赋存与微生物群落共现性[J]. 环境科学, 2023, 44(1): 169-179.
Qin R, Yu Q G, Liu Z Y, et al. Co-occurrence of tetracycline antibiotic resistance genes and microbial communities in plateau wetlands under the influence of human activities[J]. Environmental Science, 2023, 44(1): 169-179. DOI:10.13227/j.hjkx.202203109
[11] He S N, Dong D M, Zhang X, et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China)[J]. Environmental Science and Pollution Research, 2018, 25(24): 24003-24012. DOI:10.1007/s11356-018-2459-3
[12] Dong D M, Zhang L W, Liu S, et al. Antibiotics in water and sediments from Liao River in Jilin Province, China: occurrence, distribution, and risk assessment[J]. Environmental Earth Sciences, 2016, 75(16). DOI:10.1007/s12665-016-6008-4
[13] Chen H Y, Jing L J, Teng Y G, et al. Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 2018, 618: 409-418. DOI:10.1016/j.scitotenv.2017.11.054
[14] 中华人民共和国国务院办公厅. 新污染物治理行动方案[R]. 北京: 国务院办公厅, 2022.
[15] 李柏林, 张贺, 王俊, 等. 长江武汉段水源地典型抗生素及抗性基因污染特征与生态风险评价[J]. 环境科学, 2023, 44(4): 2032-2039.
Li B L, Zhang H, Wang J, et al. Pollution characteristics and risk assessment of antibiotics and resistance genes in different water sources in the Wuhan section of the Yangtze River[J]. Environmental Science, 2023, 44(4): 2032-2039. DOI:10.13227/j.hjkx.202204318
[16] 李富娟, 高礼, 李凌云, 等. 宁夏第三排水沟中抗生素的污染特征与生态风险评估[J]. 环境科学, 2022, 43(3): 1394-1403.
Li F J, Gao L, Li L Y, et al. Contamination characteristics and ecological risk assessment of antibiotics in the Third Drain of Ningxia[J]. Environmental Science, 2022, 43(3): 1394-1403. DOI:10.3969/j.issn.1000-6923.2022.03.045
[17] 张小红, 陶红, 王亚娟, 等. 银川市农田土壤中四环素类抗生素的污染特征及生态风险评估[J]. 环境科学, 2021, 42(10): 4933-4941.
Zhang X H, Tao H, Wang Y J, et al. Pollution characteristics and risk assessment of tetracycline antibiotics in farmland soil in Yinchuan[J]. Environmental Science, 2021, 42(10): 4933-4941. DOI:10.13227/j.hjkx.202012241
[18] 王璠, 刘彬, 郭丽. 武汉市东湖抗生素污染现状及生态风险评估[J]. 环境监控与预警, 2022, 14(5): 176-182.
Wang F, Liu B, Guo L. The pollution status and ecological risk assessment of antibiotics of East Lake in Wuhan[J]. Environmental Monitoring and Forewarning, 2022, 14(5): 176-182. DOI:10.3969/j.issn.1674-6732.2022.05.026
[19] EC (European Commission). Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No 1488/94 on risk assessment for existing substances and directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market, part Ⅱ[R]. Brussels: European Commission, 2003.
[20] 陈丽红, 何连生, 孟甜, 等. 环境中典型抗生素生态安全阈值[J]. 环境科学学报, 2023, 43(4): 497-510.
Chen L H, He L S, Meng T, et al. Ecological safety threshold of typical antibiotics in environment[J]. Acta Scientiae Circumstantiae, 2023, 43(4): 497-510. DOI:10.13671/j.hjkxxb.2022.0288
[21] Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342. DOI:10.1016/j.talanta.2005.09.037
[22] 陈丽红, 张瑜, 丁婷婷, 等. 红霉素水生生物基准推导和对中国部分水体生态风险初步评估[J]. 生态环境学报, 2020, 29(8): 1610-1616.
Chen L H, Zhang Y, Ding T T, et al. Development of aquatic life criteria for erythromycin and preliminary assessment for the ecological risk of some water bodies in China[J]. Ecology and Environmental Sciences, 2020, 29(8): 1610-1616. DOI:10.16258/j.cnki.1674-5906.2020.08.012
[23] 陈丽红, 李强, 肖欣欣, 等. 典型四环素类抗生素的预测无效应浓度和风险评估[J]. 生态毒理学报, 2021, 16(5): 334-346.
Chen L H, Li Q, Xiao X X, et al. Predicted non-effect concentration and risk assessment of typical tetracycline antibiotics[J]. Asian Journal of Ecotoxicology, 2021, 16(5): 334-346.
[24] 戴刚, 徐浩, 杨琼, 等. 毕节垃圾场周边水源中抗生素污染特征[J]. 环境科学与技术, 2015, 38(S2): 263-268.
Dai G, Xu H, Yang Q, et al. Pollution characteristics of antibiotics in water source of the surrounding of health garbage's landfill, Bijie[J]. Environmental Science & Technology, 2015, 38(S2): 263-268.
[25] 孙凯. 洪泽湖湿地典型抗生素污染特征与生态风险[D]. 南京: 南京林业大学, 2015.
Sun K. Contamination characteristics and ecological risk assessment of typical antibiotics in the water of the Hongze Lake[D]. Nanjing: Nanjing Forestry University, 2015.
[26] 张慧, 郭文建, 朱晨, 等. 山东省主要河流中抗生素污染组成及空间分布特征[J]. 中国环境监测, 2019, 35(1): 89-94.
Zhang H, Guo W J, Zhu C, et al. Composition and spatial distribution characteristics of antibiotics in main rivers of Shandong province[J]. Environmental Monitoring in China, 2019, 35(1): 89-94. DOI:10.19316/j.issn.1002-6002.2019.01.11
[27] 章琴琴. 北京温榆河流域抗生素污染分布特征及源解析研究[D]. 重庆: 重庆大学, 2012.
Zhang Q Q. Determination and source apportionment of three classes of antibiotics in Beijing Wenyu Rivers[D]. Chongqing: Chongqing University, 2012.
[28] Zou S C, Xu W H, Zhang R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities[J]. Environmental Pollution, 2011, 159(10): 2913-2920. DOI:10.1016/j.envpol.2011.04.037
[29] 丁惠君, 钟家有, 吴亦潇, 等. 鄱阳湖流域南昌市城市湖泊水体抗生素污染特征及生态风险分析[J]. 湖泊科学, 2017, 29(4): 848-858.
Ding H J, Zhong J Y, Wu Y X, et al. Characteristics and ecological risk assessment of antibiotics in five city lakes in Nanchang City, Lake Poyang catchment[J]. Journal of Lake Sciences, 2017, 29(4): 848-858.
[30] 牟霄, 张崇淼, 李永强, 等. 典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险[J]. 生态毒理学报, 2023, 18(3): 366-375.
Mou X, Zhang C M, Li Y Q, et al. Distribution of typical antibiotics in effluent from different units of municipal wastewater treatment plants and ecological risks in receiving waters[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 366-375.
[31] 李嘉, 张瑞杰, 王润梅, 等. 小清河流域抗生素污染分布特征与生态风险评估[J]. 农业环境科学学报, 2016, 35(7): 1384-1391.
Li J, Zhang R J, Wang R M, et al. Distribution characteristics and ecological risk assessment of antibiotic pollution in Xiaoqing River watershed[J]. Journal of Agro-Environment Science, 2016, 35(7): 1384-1391.
[32] 童帮会. 淀山湖典型抗生素污染特征、来源及风险评价[D]. 上海: 华东师范大学, 2019.
Tong B H. Pollution characteristics, sources and risk assessment of typical antibiotics in Dianshan Lake of Shanghai[D]. Shanghai: East China Normal University, 2019.
[33] 杨基峰, 应光国, 赵建亮, 等. 配套养殖体系中部分抗生素的污染特征[J]. 环境化学, 2015, 34(1): 54-59.
Yang J F, Ying G G, Zhao J L, et al. Pollution characteristics of antibiotics in complete sets of farming system[J]. Environmental Chemistry, 2015, 34(1): 54-59.
[34] Zheng Q, Zhang R J, Wang Y H, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China: impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78: 26-33. DOI:10.1016/j.marenvres.2012.03.007
[35] 方昊, 余军楠, 王智峰, 等. 江苏典型中华绒螯蟹养殖区抗生素污染特征与生态风险评估[J]. 生态与农村环境学报, 2019, 35(11): 1436-1444.
Fang H, Yu J N, Wang Z F, et al. Contamination characteristics and ecological risk assessment of antibiotics in typical Eriocheir sinensis aquaculture environments of Jiangsu Province[J]. Journal of Ecology and Rural Environment, 2019, 35(11): 1436-1444. DOI:10.19741/j.issn.1673-4831.2018.0889
[36] 秦延文, 张雷, 时瑶, 等. 大辽河表层水体典型抗生素污染特征与生态风险评价[J]. 环境科学研究, 2015, 28(3): 361-368.
Qin Y W, Zhang L, Shi Y, et al. Contamination characteristics and ecological risk assessment of typical antibiotics in surface water of the Daliao River, China[J]. Research of Environmental Sciences, 2015, 28(3): 361-368. DOI:10.13198/j.issn.1001-6929.2015.03.05
[37] 魏红, 王嘉玮, 杨小雨, 等. 渭河关中段表层水中抗生素污染特征与风险[J]. 中国环境科学, 2017, 37(6): 2255-2262.
Wei H, Wang J W, Yang X Y, et al. Contamination characteristic and ecological risk of antibiotics in surface water of the Weihe Guanzhong section[J]. China Environmental Science, 2017, 37(6): 2255-2262. DOI:10.3969/j.issn.1000-6923.2017.06.033
[38] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 2016, 37(12): 4596-4604.
Wu X Y, Zou H, Zhu R, et al. Occurrence, distribution and ecological risk of aantibiotics in surface water of the Gonghu Bay, Taihu Lake[J]. Environmental Science, 2016, 37(12): 4596-4604. DOI:10.13227/j.hjkx.201603005
[39] 薛保铭. 广西邕江水体典型抗生素污染特征与生态风险评估[D]. 南宁: 广西大学, 2013.
Xue B M. Contamination and risks assessment of typical antibiotics in the Yongjiang River, Guangxi Province[D]. Nanning: Guangxi University, 2013.
[40] Chen K, Zhou J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95: 604-612. DOI:10.1016/j.chemosphere.2013.09.119
[41] Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175: 22-29. DOI:10.1016/j.envpol.2012.12.008
[42] Jiang Y, Xu C, Wu X Y, et al. Occurrence, seasonal variation and risk assessment of antibiotics in Qingcaosha reservoir[J]. Water, 2018, 10(2). DOI:10.3390/w10020115
[43] 陈奕涵. "河流-水库"系统水环境典型污染物赋存特征的研究——以东江源区为例[D]. 上海: 上海交通大学, 2018.
Chen Y H. Occurrence characteristics of typical pollutants in the auqtic environment of river-reservoir system: a case stduy in the headwater region of Dongjiang River[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[44] 姜凌霄. 鄱阳湖区典型养猪场废水抗生素污染特征及催化降解研究[D]. 南昌: 南昌航空大学, 2012.
Jiang L X. Pollution characteristics of typical antibiotics in livestock wastewater from Poyang-Lake district and its photocatalytic degradation[D]. Nanchang: Nanchang Hangkong University, 2012.
[45] 刘晓晖, 卢少勇. 大通湖表层水体中抗生素赋存特征与风险[J]. 中国环境科学, 2018, 38(1): 320-329.
Liu X H, Lu S Y. Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China[J]. China Environmental Science, 2018, 38(1): 320-329. DOI:10.3969/j.issn.1000-6923.2018.01.036
[46] 那广水, 陈彤, 张月梅, 等. 中国北方地区水体中四环素族抗生素残留现状分析[J]. 中国环境监测, 2009, 25(6): 78-80.
Na G S, Chen T, Zhang Y M, et al. Analysis terracyclines antibiotics residues status in water of North China[J]. Environmental Monitoring in China, 2009, 25(6): 78-80. DOI:10.3969/j.issn.1002-6002.2009.06.022
[47] 沈群辉, 冀秀玲, 傅淑珺, 等. 黄浦江水域抗生素及抗性基因污染初步研究[J]. 生态环境学报, 2012, 21(10): 1717-1723.
Shen Q H, Ji X L, Fu S J, et al. Preliminary studies on the pollution levels of antibiotic and antibiotic resistance genes in Huangpu River, China[J]. Ecology and Environmental Sciences, 2012, 21(10): 1717-1723. DOI:10.3969/j.issn.1674-5906.2012.10.015
[48] 陈永山, 章海波, 骆永明, 等. 典型规模化养猪场废水中兽用抗生素污染特征与去除效率研究[J]. 环境科学学报, 2010, 30(11): 2205-2212.
Chen Y S, Zhang H B, Luo Y M, et al. A preliminary study on the occurrence and dissipation of antibiotics in swine wastewater[J]. Acta Scientiae Circumstantiae, 2010, 30(11): 2205-2212. DOI:10.13671/j.hjkxxb.2010.11.007
[49] 杜雪. 南昌市四种典型地表水体抗生素污染特征与生态风险评估[D]. 南昌: 南昌大学, 2015.
Du X. Contamination characteristics and risks assessment of antibiotics in four typical surface waters in Nanchang[D]. Nanchang: Nanchang University, 2015.
[50] 杨常青, 王龙星, 侯晓虹, 等. 大辽河水系河水中16种抗生素的污染水平分析[J]. 色谱, 2012, 30(8): 756-762.
Yang C Q, Wang L X, Hou X H, et al. Analysis of pollution levels of 16 antibiotics in the river water of Daliao River water system[J]. Chinese Journal of Chromatography, 2012, 30(8): 756-762.
[51] Choi K, Kim Y, Park J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea[J]. Science of the Total Environment, 2008, 405(1-3): 120-128. DOI:10.1016/j.scitotenv.2008.06.038
[52] Xu W H, Zhang G, Zou S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Pollution, 2007, 145(3): 672-679. DOI:10.1016/j.envpol.2006.05.038
[53] Himmelsbach M, Buchberger W. Residue analysis of oxytetracycline in water and sediment samples by high-performance liquid chromatography and immunochemical techniques[J]. Microchimica Acta, 2005, 151(1-2): 67-72. DOI:10.1007/s00604-005-0372-1
[54] Tang J, Shi T Z, Wu X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122: 154-161. DOI:10.1016/j.chemosphere.2014.11.032
[55] Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA[J]. Science of the Total Environment, 2006, 361(1-3): 196-207. DOI:10.1016/j.scitotenv.2005.06.030
[56] Managaki S, Murata A, Takada H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta[J]. Environmental Science & Technology, 2007, 41(23): 8004-8010.
[57] 陈涛, 李彦文, 莫测辉, 等. 广州污水厂磺胺和喹诺酮抗生素污染特征研究[J]. 环境科学与技术, 2010, 33(6): 144-147, 180.
Chen T, Li Y W, Mo C H, et al. Screening of sulfonamide and fluroquinolone antibiotics in wastewater of sewage treatment plants in Guangzhou, South China[J]. Environmental Science & Technology, 2010, 33(6): 144-147, 180.
[58] 王敏, 俞慎, 洪有为, 等. 5种典型滨海养殖水体中多种类抗生素的残留特性[J]. 生态环境学报, 2011, 20(5): 934-939.
Wang M, Yu S, Hong Y W, et al. Residual characterization of multi-categorized antibiotics in five typical aquaculture waters[J]. Ecology and Environmental Sciences, 2011, 20(5): 934-939. DOI:10.3969/j.issn.1674-5906.2011.05.026
[59] 徐浩, 肖湘波, 唐文浩, 等. 海口城区地表水环境中抗生素含量特征研究[J]. 环境科学与技术, 2013, 36(9): 60-65.
Xu H, Xiao X B, Tang W H, et al. Concentration characteristics of antibiotics in urban aquatic environment of Haikou[J]. Environmental Science & Technology, 2013, 36(9): 60-65. DOI:10.3969/j.issn.1003-6504.2013.09.013
[60] 许祥. 城市饮用水源中磺胺类抗生素污染特征分析和风险评价[D]. 杭州: 浙江工业大学, 2019.
Xu X. Pollution characteristics and risk assessment of sulfonamides in urban drinking water sources[D]. Hangzhou: Zhejiang University of Technology, 2019.
[61] 朱婷婷, 宋战锋, 尹魁浩, 等. 深圳西丽水库抗生素残留现状及健康风险研究[J]. 环境污染与防治, 2014, 36(5): 49-53, 58.
Zhu T T, Song Z F, Yin K H, et al. Study on current situation and health risk of antibiotics residue in source water of Xili reservoir in Shenzhen[J]. Environmental Pollution & Control, 2014, 36(5): 49-53, 58. DOI:10.3969/j.issn.1001-3865.2014.05.011
[62] 申立娜, 张璐璐, 秦珊, 等. 白洋淀喹诺酮类抗生素污染特征及其与环境因子相关性研究[J]. 环境科学学报, 2019, 39(11): 3888-3897.
Shen L N, Zhang L L, Qin S, et al. The occurrence and distribution of quinolones (QNs) and correlation analysis between QNs and physical-chemical parameters in Baiyangdian Lake, North China[J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3888-3897. DOI:10.13671/j.hjkxxb.2019.0165
[63] 李晓娟. 固相萃取-超高效液相色谱串联质谱法对杭州市不同水环境中13种痕量药物残留状况的检测及分析[D]. 杭州: 浙江大学, 2011.
Li X J. Determination of 13 trace pharmaceuticals of different waters in Hangzhou by SPE-UPLS-MS/MS[D]. Hangzhou: Zhejiang University, 2011.
[64] Xu W H, Yan W, Li X D, et al. Antibiotics in riverine runoff of the Pearl River delta and Pearl River estuary, China: concentrations, mass loading and ecological risks[J]. Environmental Pollution, 2013, 182: 402-407. DOI:10.1016/j.envpol.2013.08.004
[65] 徐维海, 张干, 邹世春, 等. 典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征[J]. 环境科学, 2007, 28(8): 1779-1783.
Xu W H, Zhang G, Zou S C, et al. Occurrence, distribution and fate of antibiotics in sewage treatment plants[J]. Environmental Science, 2007, 28(8): 1779-1783. DOI:10.3321/j.issn:0250-3301.2007.08.023
[66] 梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22(2): 304-310.
Liang X M, Shi Z, Huang X P. Occurrence of antibiotics in typical aquaculture of the Pearl River estuary[J]. Ecology and Environmental Sciences, 2013, 22(2): 304-310. DOI:10.3969/j.issn.1674-5906.2013.02.022
[67] McClure E L, Wong C S. Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters[J]. Journal of Chromatography A, 2007, 1169(1-2): 53-62. DOI:10.1016/j.chroma.2007.08.062
[68] Yang J F, Ying G G, Zhao J L, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS[J]. Science of the Total Environment, 2010, 408(16): 3424-3432. DOI:10.1016/j.scitotenv.2010.03.049
[69] Zhou L J, Ying G G, Zhao J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China[J]. Environmental Pollution, 2011, 159(7): 1877-1885. DOI:10.1016/j.envpol.2011.03.034
[70] 陈永山, 章海波, 骆永明, 等. 苕溪流域典型断面底泥14种抗生素污染特征[J]. 环境科学, 2011, 32(3): 667-672.
Chen Y S, Zhang H B, Luo Y M, et al. Investigation of 14 selected antibiotics in sediments of the typical cross sections of Tiaoxi River[J]. Environmental Science, 2011, 32(3): 667-672.
[71] 石浩. 沉积物中20种抗生素残留的分析方法及其应用[D]. 上海: 华东师范大学, 2014.
Shi H. The analysis method of twenty antibiotics in the sediment and its application[D]. Shanghai: East China Normal University, 2014.
[72] Coyne R, Hiney M, O'Connor B, et al. Concentration and persistence of oxytetracycline in sediments under a marine salmon farm[J]. Aquaculture, 1994, 123(1-2): 31-42. DOI:10.1016/0044-8486(94)90117-1
[73] Capone D G, Weston D P, Miller V, et al. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture[J]. Aquaculture, 1996, 145(1-4): 55-75. DOI:10.1016/S0044-8486(96)01330-0
[74] Haller M Y, Müller S R, Mcardell C S, et al. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2002, 952(1-2): 111-120. DOI:10.1016/S0021-9673(02)00083-3
[75] 国彬. 农用畜禽废物抗生素的污染特征和环境归宿研究[D]. 广州: 暨南大学, 2009.
Guo B. The study occurrence and the environmental risk of antibiotics in animal waste applied to land[D]. Guangzhou: Jinan University, 2009.
[76] 张树清. 规模化养殖畜禽粪有害成分测定及其无害化处理效果[D]. 北京: 中国农业科学院, 2004.
Zhang S Q. Analysis of harmful components and harmless processing of livestock and poultry manures from feedlots[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004.
[77] Li W H, Shi Y L, Gao L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11): 1307-1315. DOI:10.1016/j.chemosphere.2012.05.079
[78] 周婧. 猪粪中兽用抗生素检测方法及其季节性污染特征研究[D]. 哈尔滨: 东北农业大学, 2019.
Zhou J. Research on determination of veterinary antibiotics in manure and their seasonal pollution characteristics[D]. Harbin: Northeast Agricultural University, 2019.
[79] 胡伟. 天津城市水、土环境中典型药物与个人护理品(PPCPs)分布及其复合雌激素效应研究[D]. 天津: 南开大学, 2011.
Hu W. The study on occurrence and distribution of typical pharmaceuticals and personal care products (PPCPs) in Tianjin urban aqueous and soil environment and the combined estrogenic effects[D]. Tianjin: Nankai University, 2011.
[80] 刘珂. 胶州湾典型海岸带沉积物中喹诺酮抗生素时空分布特征及风险评价[D]. 青岛: 青岛大学, 2018.
Liu K. Spatial, temporal distribution and risk assessment of quinotine antibiotics in the surface sediments of coastal zone, Jiaozhou Bay[D]. Qingdao: Qingdao University, 2018.
[81] 赵晓东, 乔青青, 秦宵睿, 等. 近15年我国土壤抗生素污染特征与生物修复研究进展[J]. 环境科学, 2023, 44(7): 4059-4076.
Zhao X D, Qiao Q Q, Qin X R, et al. Characteristics of antibiotic contamination of soil in China in past fifteen years and the bioremediation technology: a review[J]. Environmental Science, 2023, 44(7): 4059-4076.
[82] Li C, Chen J Y, Wang J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. Science of the Total Environment, 2015, 521-522: 101-107. DOI:10.1016/j.scitotenv.2015.03.070
[83] 张兰河, 王佳佳, 哈雪姣, 等. 北京地区菜田土壤抗生素抗性基因的分布特征[J]. 环境科学, 2016, 37(11): 4395-4401.
Zhang L H, Wang J J, Ha X J, et al. Distribution characteristics of antibiotic resistance genes in vegetable soils in Beijing[J]. Environmental Science, 2016, 37(11): 4395-4401.
[84] 尹春艳, 骆永明, 滕应, 等. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学, 2012, 33(8): 2810-2816.
Yin C Y, Luo Y M, Teng Y, et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science, 2012, 33(8): 2810-2816.
[85] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9): 2992-2998. DOI:10.1016/j.envpol.2010.05.023
[86] 张志强, 李春花, 黄绍文, 等. 土壤及畜禽粪肥中四环素类抗生素固相萃取-高效液相色谱法的优化与初步应用[J]. 植物营养与肥料学报, 2013, 19(3): 713-726.
Zhang Z Q, Li C H, Huang S W, et al. Optimization of residual tetracyclines analysis in soils and manure using SPE-HPLC and pilot survey in Tianjin[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 713-726.
[87] An J, Chen H W, Wei S H, et al. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, Northeast China[J]. Environmental Earth Sciences, 2015, 74(6): 5077-5086. DOI:10.1007/s12665-015-4528-y
[88] 张笑归, 宁国辉, 刘树庆, 等. 张家口葡萄产区土壤抗生素含量及其潜在生态环境风险评价[J]. 华北农学报, 2011, 26(S2): 146-151.
Zhang X G, Ning G H, Liu S Q, et al. Study on eco-environment risk assessment of antibiotics concentrations in soil and environment in the grapes region of Zhangjiakou[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2): 146-151.
[89] 杨晓蕾. 土壤中典型抗生素的同时测定及其方法优化[D]. 济南: 山东大学, 2012.
Yang X L. Simultaneous determination of typical antibiotics in soil and their method optimization[D]. Jinan: Shandong University, 2012.
[90] 孙奉翠. 土壤中四类典型抗生素的同时测定及其方法优化[D]. 济南: 山东大学, 2013.
Sun F C. Simultaneous determination of four kinds of typical antibiotics in soil and method optimization[D]. Jinan: Shandong University, 2013.
[91] Sun J T, Zeng Q T, Tsang D C W, et al. Antibiotics in the agricultural soils from the Yangtze River delta, China[J]. Chemosphere, 2017, 189: 301-308.
[92] Zhang H B, Zhou Y, Huang Y J, et al. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures[J]. Chemosphere, 2016, 152: 229-237.
[93] Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235-236: 178-185.
[94] Zheng W L, Zhang L F, Zhang K Y, et al. Determination of tetracyclines and their epimers in agricultural soil fertilized with swine manure by ultra-high-performance liquid chromatography tandem mass spectrometry[J]. Journal of Integrative Agriculture, 2012, 11(7): 1189-1198.
[95] 罗凯, 李文红, 章海波, 等. 南京典型设施菜地有机肥和土壤中四环素类抗生素的污染特征调查[J]. 土壤, 2014, 46(2): 330-338.
Luo K, Li W H, Zhang H B, et al. Pollution characteristics of tetracycline antibiotics in typical protected vegetable organic fertilizer of Nanjing City[J]. Soils, 2014, 46(2): 330-338.
[96] Wei R C, Ge F, Zhang L L, et al. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China[J]. Chemosphere, 2016, 144: 2377-2383.
[97] 鲍陈燕, 顾国平, 徐秋桐, 等. 施肥方式对蔬菜地土壤中8种抗生素残留的影响[J]. 农业资源与环境学报, 2014, 31(4): 313-318.
Bao C Y, Gu G P, Xu Q T, et al. Residues of eight antibiotics in vegetable soils affected by fertilization methods[J]. Journal of Agricultural Resources and Environment, 2014, 31(4): 313-318.
[98] 张慧敏, 章明奎, 顾国平. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J]. 生态与农村环境学报, 2008, 24(3): 69-73.
Zhang H M, Zhang M K, Gu G P. Residues of tetracyclines in livestock and poultry manures and agricultural soils from north Zhejiang Province[J]. Journal of Ecology and Rural Environment, 2008, 24(3): 69-73.
[99] 赵方凯, 杨磊, 李守娟, 等. 长三角典型城郊土壤抗生素空间分布的影响因素研究[J]. 环境科学学报, 2018, 38(3): 1163-1171.
Zhao F K, Yang L, Li S J, et al. Affecting factors of the spatial distribution of antibiotics in soils in typical periurban area of Yangtze River delta[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 1163-1171.
[100] Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River delta area, Southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276.
[101] 赵方凯, 陈利顶, 杨磊, 等. 长三角典型城郊不同土地利用土壤抗生素组成及分布特征[J]. 环境科学, 2017, 38(12): 5237-5246.
Zhao F K, Chen L D, Yang L, et al. Composition and distribution of antibiotics in soils with different land use types in a typical peri-urban area of the Yangtze River delta[J]. Environmental Science, 2017, 38(12): 5237-5246.
[102] Wu L, Pan X, Chen L K, et al. Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in East China[J]. Environmental Science and Pollution Research, 2013, 20(12): 8342-8354.
[103] Huang X, Liu C X, Li K, et al. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China[J]. Environmental Science and Pollution Research, 2013, 20(12): 9066-9074.
[104] 王良, 刘思路, 代光胜, 等. 洱海流域畜禽饲料·粪便·土壤中四环素类抗生素残留分析[J]. 安徽农业科学, 2017, 45(18): 70-72, 76.
Wang L, Liu S L, Dai G S, et al. Analysis of residue of tetracyclines antibiotics in livestock manures and soil in Erhai-Lake Basin[J]. Journal of Anhui Agricultural Sciences, 2017, 45(18): 70-72, 76.
[105] 张涛, 郭晓, 刘俊杰, 等. 江西梅江流域土壤中四环素类抗生素的含量及空间分布特征[J]. 环境科学学报, 2017, 37(4): 1493-1501.
Zhang T, Guo X, Liu J J, et al. Concentration and spatial distribution of tetracycline antibiotics in soil of Meijiang River catchment, Jiangxi Province[J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1493-1501.
[106] 张林. 彭州菜地土-肥体系中四环素类抗生素检测及其污染性状分析[D]. 雅安: 四川农业大学, 2011.
Zhang L. Tetracyclines detection and pollution characteristics analysis on soil-manure system of Pengzhou vegetable base[D]. Ya'an: Sichuan Agricultural University, 2011.
[107] 刘彩媚, 林泳欣, 谢晓仪, 等. 广州市城-郊梯度上典型蔬菜地土壤抗生素污染研究[J]. 广东农业科学, 2019, 46(6): 59-67.
Liu C M, Lin Y X, Xie X Y, et al. Study on antibiotic pollution in soils of typical vegetable fields along an urban-suburban gradient in Guangzhou[J]. Guangdong Agricultural Sciences, 2019, 46(6): 59-67.
[108] 邰义萍, 莫测辉, 李彦文, 等. 广州市某绿色和有机蔬菜基地土壤中四环素类抗生素的含量与分布特征[J]. 农业环境科学学报, 2014, 33(9): 1743-1748.
Tai Y P, Mo C H, Li Y W, et al. Concentrations and distributions of tetracycline antibiotics in soils of green and organic vegetable fields in Guangzhou, China[J]. Journal of Agro-Environment Science, 2014, 33(9): 1743-1748.
[109] 朱秀辉, 曾巧云, 解启来, 等. 广州市北郊蔬菜基地土壤四环素类抗生素的残留及风险评估[J]. 农业环境科学学报, 2017, 36(11): 2257-2266.
Zhu X H, Zeng Q Y, Xie Q L, et al. Residues and risk assessment of tetracycline antibiotics in vegetable-growing soils from suburban areas of northern Guangzhou[J]. Journal of Agro-Environment Science, 2017, 36(11): 2257-2266.
[110] Xiang L, Wu X L, Jiang Y N, et al. Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, South China[J]. Environmental Science and Pollution Research, 2016, 23(14): 13984-13995.
[111] 段夏珍. 惠州市蔬菜基地抗生素污染特征的初步研究[D]. 广州: 暨南大学, 2011.
Duan X Z. The preliminary studies on pollution characteristics of antibiotics from Huizhou vegetable base[D]. Guangzhou: Jinan University, 2011.
[112] 邰义萍, 莫测辉, 李彦文, 等. 东莞市蔬菜基地土壤中四环素类抗生素的含量与分布[J]. 中国环境科学, 2011, 31(1): 90-95.
Tai Y P, Mo C H, Li Y W, et al. Concentration and distribution of tetracycline antibiotics in soils from vegetable fields of Dongguan City[J]. China Environmental Science, 2011, 31(1): 90-95.
[113] 李彦文, 莫测辉, 赵娜, 等. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J]. 环境科学, 2009, 30(6): 1762-1766.
Li Y W, Mo C H, Zhao N, et al. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 2009, 30(6): 1762-1766.