首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
南京典型城市湖泊湖滨带不同植物区脱氮过程及其影响因素
摘要点击 140  全文点击 8  投稿时间:2024-06-19  修订日期:2024-08-15
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  反硝化  厌氧氨氧化(ANAMMOX)  氧化亚氮(N2O)  城市湖泊湖滨带  湿地植物  反硝化微生物
英文关键词  denitrification  anaerobic ammonia oxidation (ANAMMOX)  nitrous oxide (N2O)  littoral zone of urban lakes  wet land plants  denitrifying microorganisms
作者单位E-mail
孙丽杰 河海大学水灾害防御全国重点实验室, 南京 210098
河海大学水文水资源学院, 南京 210098 
ljsun@hhu.edu.cn 
苏芮 河海大学水灾害防御全国重点实验室, 南京 210098
河海大学水文水资源学院, 南京 210098 
 
何肖微 河海大学水文水资源学院, 南京 210098  
李启升 中国科学院南京地理与湖泊研究所湖泊与流域水安全重点实验室, 南京 211135
中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 211135 
 
黄睿 江苏省水利科学研究院, 南京 210017  
曾巾 中国科学院南京地理与湖泊研究所湖泊与流域水安全重点实验室, 南京 211135
中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 211135 
 
赵大勇 河海大学水灾害防御全国重点实验室, 南京 210098
河海大学水文水资源学院, 南京 210098
河海大学地理与遥感学院, 南京 211000 
dyzhao@hhu.edu.cn 
中文摘要
      氧化亚氮(N2O)是导致全球气候变化的重要温室气体之一,植物根际微生物介导的反硝化和厌氧氨氧化过程作为重要脱氮途径能够减少湖泊湿地生态系统中氮负荷,而反硝化过程是N2O的最主要产生途径. 城市湖泊湖滨带是水陆交错带,也是氮素输入和转化的重要区域,关注城市湖泊湖滨带植物-微生物介导的脱氮过程和N2O排放,对维持湖泊生态系统稳定,加强城市湖泊湿地的氮素管理和控制N2O排放,实现城市可持续发展具有重要意义. 以典型城市湖泊玄武湖湖滨带为研究对象,结合15N同位素配对、实时荧光定量PCR和高通量测序技术,比较不同类型湿地植物:莲(Nelumbo nucifera)、芦苇(Phragmites australis)和马蹄金(Dichondra micrantha)覆盖区原位N2O排放通量、潜在反硝化及厌氧氨氧化速率和功能微生物群落丰度、多样性及组成,探讨城市湖泊湿地不同类型植物-微生物介导的脱氮过程及N2O排放的驱动因子. 结果表明,玄武湖湖滨带湿地植物区N2O排放通量为6.20~15.03 μg·(m2·h)-1,其中马蹄金>莲>芦苇;3种湿地植物根际沉积物反硝化和厌氧氨氧化速率(以N计)分别为(8.92±4.33) nmol·(g·h)-1和(1.03±1.17)nmol·(g·h)-1,其中莲>马蹄金>芦苇,并且反硝化作用(65.55%~97.82%)均为主导脱氮过程;3种湿地植物根际沉积物中nirKnirS群落组成存在显著差异(ANOSIM,P<0.005),硝化杆菌科(Nitrobacteraceae,28.57%)和食球菌科(Zoogloeaceae,14.63%)分别为nirKnirS群落中优势科,并且nirS基因丰度(1.09×109 copies·g-1)比nirK(3.00×107 copies·g-1)高2个数量级,表明nirS型反硝化菌在湿地N2O排放中更具重要作用(P<0.05);此外,pH、C/N、NH4+-N和NO3--N含量驱动了玄武湖湖滨带N2O排放通量的变化,而NO2--N、LOI和TN含量是玄武湖湖滨带潜在反硝化和厌氧氨氧化速率的主要驱动因子.
英文摘要
      Nitrous oxide (N2O) is one of the important greenhouse gases contributing to the global warming trend. As important nitrogen removal pathways, microbially mediated denitrification and anaerobic ammonia oxidation (ANAMMOX) in the rhizospheres of wetland plants can reduce nitrogen load in freshwater wetlands, and the denitrification process is the major N2O source. Littoral zone of urban lakes is an ecotone between terrestrial and aquatic ecosystems and an important area for nitrogen input and transformation. The investigation of plant-microbially mediated nitrogen removal processes and N2O emissions in the littoral zone of urban lakes is of great significance for maintaining the stability of lake ecosystems, strengthening nitrogen management, and controlling N2O emission, as well as realizing sustainable urban development. In this study, the littoral zone of Xuanwu Lake (a typical urban lake in Nanjing) was selected to compare the in situ N2O emission fluxes, potential denitrification and ANAMMOX rates, as well as the abundance, diversity, and composition of functional microbial communities associated with three dominant plants (i.e., Nelumbo nuciferaPhragmites australis, and Dichondra micrantha) using 15N isotope pairing, real-time quantitative PCR, and high-throughput sequencing techniques. In addition, the influences of different driving factors on the potential denitrification and ANAMMOX rates and N2O fluxes were further explored in the littoral zone. The results showed that the N2O emission fluxes in the littoral zone of Xuanwu Lake ranged from 6.20 to 15.03 μg·(m2·h)-1 D. micrantha>N. nucifera>P. australis). Potential denitrification and ANAMMOX rates in the rhizosphere sediments of the three wetland plants were (8.92±4.33) nmol·(g·h)-1 and (1.03±1.17) nmol·(g·h)-1, respectively (N. nucifera>D. micrantha>P. australis), and denitrification (65.55%-97.82%) was the dominant nitrogen removal process. There were significant differences in the community composition of nirK and nirS in rhizosphere sediments of the three wetland plants (ANOSIM, P<0.005), and Nitrobacteraceae (28.57%) and Zoogloeaceae (14.63%) were the dominant families in the nirK and nirS communities. The abundances of the nirS gene (1.09×109 copies·g-1) were 2 orders of magnitude higher than those of the nirK gene (3.00×107 copies·g-1), indicating that nirS-denitrifier played a more important role in N2O emission (P<0.05). Moreover, pH, C/N, NH4+-N, and NO3--N contents drove the changes of N2O fluxes, while NO2--N, LOI, and TN contents were the main regulators of potential denitrification and ANAMMOX rates in the littoral zone of Xuanwu Lake.

您是第82936523位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2