基于土地利用/覆被变化的江苏省陆地生态系统碳储量时空演变特征 |
摘要点击 262 全文点击 13 投稿时间:2023-10-08 修订日期:2024-07-12 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 土地利用/覆被 FLUS模型 InVEST模型 碳储量 江苏省 |
英文关键词 land use and cover change FLUS model InVEST model carbon storage Jiangsu Province |
|
中文摘要 |
陆地区域土地利用/覆被变化是导致陆地生态系统碳储量变化的主要原因,国土空间规划相关政策对土地利用变化带来巨大的影响,基于土地利用/覆被类型核算碳储量,并预测未来发展变化对碳储量的影响,可以为“双碳”目标下国土空间规划提供科学依据.本世纪以来,在人类社会活动和自然因素影响的共同作用下,江苏省土地利用变化显著,陆地生态系统碳储量也相应发生巨大的改变.基于1995~2020年江苏省土地利用/覆被数据,使用耦合FLUS-InVEST模型测算1995~2020年江苏省土地利用/覆被情况及碳储量变化,并预测多情景下江苏省2030年的土地利用/覆被和碳储量时空分布情形.结果表明:①1995~2020年间碳储量流失较严重,共计减少了36.69 Tg.②2030年经济发展情景和自然发展情景下碳储量均呈现下降趋势,国土空间规划约束的生态保护情景下的未来碳储量预测值会增加,且生态保护情景的碳储量预测值最高,较2020年上升了18.57 Tg,国土空间规划相关政策实施对碳增汇效果显著.③2030年江苏省多情景下的碳储量在空间分布上具有相似性,碳储量高值区域在江苏省北部、东北部及东部区域出现聚集,低值区域则在经济发达地区聚集. |
英文摘要 |
Land use and cover change in a region is the main cause of carbon storage changes in terrestrial ecosystems. Exploring the carbon storage based on land use/cover types and predicting the impact of future changes can provide reasonable foundation for a territory development plan under the "dual carbon" goal. Since this century, under the joint influence of human social activities and natural factors, the land use situation in Jiangsu Province has undergone significant changes, and the carbon storage of terrestrial ecosystems has correspondingly undergone obvious changes. This study explores the situation of land use/cover data in Jiangsu Province from 1995 to 2020 based on the coupled FLUS-InVEST model. Additionally, it predicts the spatiotemporal distribution of land use/cover and carbon storage in Jiangsu Province in 2030 under multiple scenarios. The results indicate that: ① The period from 1995 to 2020 was a period of severe carbon storage loss, with a total reduction of 36.69 Tg. ② In 2030, under the economic development scenario and natural development scenario, the carbon storage shows a downward trend. The predicted future carbon storage under the ecological protection scenario increases, and the predicted carbon storage under the ecological protection scenario is the highest, with an increase of 18.57 Tg compared to that in 2020. ③ In 2030, the carbon storage in Jiangsu Province under multiple scenarios have similarities in spatial distribution. High value areas of carbon reserves were clustered in the northern, northeastern, and eastern regions of Jiangsu Province, whereas low value areas were clustered in economically developed areas. |
|
|
|