首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于可解释性机器学习的滨海城市臭氧驱动因素
摘要点击 482  全文点击 49  投稿时间:2024-04-30  修订日期:2024-07-02
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  臭氧(O3  机器学习  驱动因素  SHAP模块  青岛
英文关键词  ozone (O3  machine learning  driving factors  SHAP module  Qingdao
作者单位E-mail
王超龙 青岛理工大学环境与市政工程学院, 青岛 266525 w15138755560@163.com 
薛莲 山东省青岛生态环境监测中心, 青岛 266003  
张宜升 青岛理工大学环境与市政工程学院, 青岛 266525 doctorzys@163.com 
覃笑飞 青岛理工大学环境与市政工程学院, 青岛 266525  
方渊 山东省青岛生态环境监测中心, 青岛 266003  
陶文鑫 青岛理工大学环境与市政工程学院, 青岛 266525  
杜金花 青岛理工大学环境与市政工程学院, 青岛 266525  
张苏凡 青岛理工大学环境与市政工程学院, 青岛 266525  
王冠 青岛市生态环境局市南分局, 青岛 266003  
顾达萨 香港科技大学环境与可持续发展学部, 香港 999077  
崔杉杉 青岛理工大学环境与市政工程学院, 青岛 266525  
中文摘要
      选取青岛16个环境空气监测点位(含8个国控点、7个省控点和1个背景点)大气污染物及相邻近气象点位数据,耦合极端梯度提升(XGBoost)模型,使用可解释性SHAP模块,探讨气象要素和大气污染物排放对臭氧(O3)的影响.结果表明,2019~2023年,气象因素对O3生成贡献率达67.7%,大气污染物排放对O3生成贡献率为32.3%.地表太阳辐射在10:00~17:00对O3生成贡献最大.相对湿度低于70%时有利于O3生成,特别是在12:00~16:00,相对湿度对O3生成有正向贡献,相对湿度高于70%对O3生成负贡献概率为94%.边界层高度低于500 m时,对O3浓度有正向影响,超过该高度其影响将减弱,且早晨和午后时段,边界层高度对O3生成有正向作用.东风(E)到西南风(SW)对O3浓度有正向影响.NO2在06:00~11:00呈负响应,在12:00~15:00呈正响应.PM2.5在07:00~14:00对O3浓度有正向作用,在15:00~18:00则有抑制影响.O3浓度的主导因素在不同站点和季节间存在显著差异,其中崂山区西部、仰口、市南区西部、西海岸新区东部和西海岸新区西部点位地表面太阳辐射对O3影响明显低于其它各点位,崂山区西部、市南区西部、西海岸新区东部点位NO2的影响最大,西海岸新区东部、崂山区西部和仰口点位PM2.5对O3生成的影响显著高于青岛市其它点位.春季崂山区西部和市南区西部NO2的影响更为显著;夏季仰口、西海岸新区东部和西部、崂山区西部和市北区北部点位地表面太阳辐射影响更为显著,其余点位影响O3的关键因子为相对湿度;秋季温度和地表面太阳辐射是影响O3的主要因素;冬季NO2贡献高于其他季节,主要受高强度人为源排放的影响;O3超标日分析结果表明,地表面太阳辐射和NO2为主要驱动因素;各站点PM2.5和PM10对O3超标日总SHAP值在6.1~12.4 μg·m-3.
英文摘要
      Sixteen sites in the coastal city of Qingdao, including eight national control sites, seven provincial control sites, and one background site, were selected. By coupling the extreme gradient boosting (XGBoost) model with the interpretability SHapley Additive exPlanations (SHAP) module, the impact of meteorological elements and atmospheric pollutant emissions on ozone (O3) pollution was investigated. The results indicated that from 2019 to 2023, meteorological factors contributed 67.7% to O3 formation, whereas emissions from atmospheric pollutants accounted for 32.3%. Surface solar radiation significantly affected O3 formation from 10:00 to 17:00. A positive correlation existed between temperature and O3 concentration, peaking at 14:00. A relative humidity below 70% was conducive to O3 formation and a relative humidity above 70% had a 94% probability of negatively contributing to O3 production. Particularly between 12:00 and 16:00, relative humidity significantly and positively contributed to O3 formation. When the boundary layer height was below 500 meters, it positively affected O3 concentration, whereas above this height, its impact weakened. In the morning and late afternoon, boundary layer height promoted the formation of O3 concentration. Easterly (E) to southwesterly (SW) winds had a positive effect on O3 concentrations in Qingdao. NO2 showed a negative response in the morning (06:00-11:00) and a positive response in the afternoon (12:00-15:00). PM2.5 had a nonlinear positive correlation with O3, positively affecting O3 concentration from 07:00 to 14:00 PM and suppressing it from 15:00 to 18:00. Significant differences existed in the dominant factors of O3 concentration across different areas and seasons. In the western Laoshan District, Yangkou, the western site of the Shinan District, and eastern and western parts of the West Coast New Area, surface solar radiation had a noticeably lower impact on O3 than in other locations. The effect of NO2 was most significant in the eastern parts of the West Coast New Area, western Laoshan District, and Yangkou. PM2.5 affected O3 formation more in these sites than in others of Qingdao. In spring, the impact of NO2 was more significant in the western Laoshan and Shinan Districts. In summer, surface solar radiation was more influential in Yangkou, the eastern and western parts of the West Coast New Area, the western Laoshan District, and the Shibei District, whereas, relative humidity was the key factor in other locations. In autumn, temperature and surface solar radiation were the main factors affecting O3. In winter, the contribution of NO2 was higher than that in different seasons, with anthropogenic emissions playing a more important role in O3 formation. The analysis of days exceeding O3 standards showed that surface solar radiation and NO2 were the main drivers of exceeding O3 concentrations. For all sites, the total SHAP values of PM2.5 and PM10 on days exceeding O3 standards ranged between 6.1 μg·m-3 and 12.4 μg·m-3.

您是第75704891位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2