首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
盐城市县域碳汇时空特征及其影响因素
摘要点击 810  全文点击 115  投稿时间:2024-04-02  修订日期:2024-06-15
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  县域  碳汇  时空特征  影响因素  多尺度地理加权回归模型
英文关键词  county level  carbon sinks  spatio-temporal characteristics  influencing factors  multiscale geographically weighted regression
作者单位E-mail
李建豹 南京财经大学公共管理学院, 南京 210023
南京财经大学政府管理研究中心, 南京 210023 
lijianbao888@126.com 
张彩莉 南京财经大学公共管理学院, 南京 210023  
陈红梅 南京财经大学公共管理学院, 南京 210023  
赵小风 河海大学公共管理学院, 南京 211100 zhao-xf@126.com 
李颖 南京财经大学公共管理学院, 南京 210023  
王培震 浙江财经大学公共管理学院, 杭州 310018  
中文摘要
      以盐城市10个县域为研究对象,基于核密度、趋势分析和标准差椭圆,分析1990~2020年盐城市县域碳汇时空特征,并构建多尺度地理加权回归模型,分析碳汇的主要影响因素. 结果表明:①盐城市碳汇量总体呈增加趋势. 碳汇量的绝对差异波动上升,相对差异与绝对差异的变化趋势基本一致. 各县域碳汇存在不均衡现象,且呈增强趋势. ②1990~2020年碳汇高值区主要分布在盐城沿海地区,且碳汇空间格局较为稳定. 总体呈东高西低,南高北低的空间分布特征. 碳汇标准差椭圆的中心基本以10 a为周期,移动较大距离. ③多尺度地理加权回归模型估计结果表明:第二产业比例、人均地区生产总值、人口密度和土地利用强度对碳汇影响程度不同. 第二产业比例对碳汇的负向作用最强,降低第二产业比例是提高碳汇的重要途径.
英文摘要
      The spatio-temporal characteristics of carbon sinks in the Yancheng City from 1990 to 2020 were investigated using kernel density, trend analysis, and standard deviation ellipse, and a multi-scale geographically weighted regression was constructed to analyze the main factors influencing carbon sinks. The results showed that: ① The carbon sinks generally exhibited an increasing trend. The absolute difference in carbon sinks showed an overall fluctuating upward trend, consistent with the relative difference. An imbalance in carbon sinks was observed among different counties, and it showed an increasing trend. ② From 1990 to 2020, the high value areas of carbon sinks were mainly distributed in the coastal areas of Yancheng, and the spatial pattern of carbon sinks was stable. The spatial distribution characteristic was low in the west and north and high in the east and south. The center of the standard deviation ellipse of the carbon sinks followed a 10-year cycle and shifted considerably over this period. ③ The results of the multi-scale geographically weighted regression model showed that the proportion of secondary industry, per capita gross domestic product, population density, and land use intensity had different effects on carbon sinks. The secondary industry had the strongest negative effect on carbon sinks, making it crucial to reduce its proportion to enhance carbon sinks.

您是第76812524位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2