重庆市中心城区大气VOCs季节污染特征与来源解析 |
摘要点击 1309 全文点击 219 投稿时间:2024-02-06 修订日期:2024-04-24 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 挥发性有机物(VOCs) 污染特征 臭氧生成潜势(OFP) 二次有机气溶胶生成潜势(SOAFP) 来源解析 |
英文关键词 volatile organic compounds (VOCs) pollution characteristics ozone formation potential (OFP) secondary organic aerosol formation potential (SOAFP) source apportionment |
作者 | 单位 | E-mail | 姚佳 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 重庆大学环境与生态学院, 环境科学系, 重庆 400045 | 13399606660@163.com | 李振亮 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 | zhenliangli@163.com | 陈木兰 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 | | 李陵 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 | | 徐芹 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 | | 方维凯 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 | | 彭超 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 | | 翟崇治 | 重庆市生态环境科学研究院, 城市大气环境综合观测与污染防控重庆市重点实验室, 重庆 401147 | | 王锋文 | 重庆大学环境与生态学院, 环境科学系, 重庆 400045 | | 卢培利 | 重庆大学环境与生态学院, 环境科学系, 重庆 400045 | lupl@cqu.edu.cn |
|
中文摘要 |
基于重庆市中心城区2021年6月至2022年5月的大气VOCs在线观测数据,分析了VOCs的季节污染特征、二次污染物生成潜势及其来源. 结果表明,重庆市中心城区φ(VOCs)均值为31.5×10-9,其中烷烃占比最高(39.6%),其次是含氧VOCs(OVOCs)(15.6%)、卤代烃(13.9%)、芳香烃(11.6%)、烯烃(10.5%)和炔烃(8.3%). 时间上呈现出冬季(35.7×10-9)>秋季(32.5×10-9)>夏季(31.3×10-9)>春季(27.6×10-9)的体积分数变化特征. 夏季芳香烃对臭氧生成贡献最高,其中臭氧生成潜势(OFP)较高的物种是1,2,4-三甲苯、甲苯和间/对-二甲苯. 冬季芳香烃对二次有机气溶胶(SOA)生成潜势贡献率高达96%,其中甲苯和间/对-二甲苯是SOA生成潜势的主要贡献物种. 夏季VOCs的主要来源是机动车排放源(30.9%)、工业源(21.2%)和溶剂使用源(18.6%),冬季的主要来源是机动车排放源(35.8%)、燃烧源(30.9%)和工业源(20.6%),冬季燃烧源对VOCs的贡献(30.9%)显著高于夏季(17.4%). |
英文摘要 |
The long-term seasonal pollution characteristics, environmental effects, and sources of atmospheric volatile organic compounds (VOCs) were investigated based on the one-year (06/2021-05/2022) online observation data of VOCs in the central urban area of Chongqing. The results showed that during the observation period, the mean value of φ(VOCs) was 31.5×10-9, of which alkane accounted for the highest proportion (39.6%), followed by oxygenated VOCs (OVOCs) (15.6%), halogenated hydrocarbons (13.9%), aromatic hydrocarbons (11.6%), olefin (10.5%), and alkyne (8.3%). In terms of time, the volume fraction changed to winter (35.7×10-9) > autumn (32.5×10-9) > summer (31.3×10-9) > spring (27.6×10-9). In summer, the highest contribution of aromatic hydrocarbons to ozone generation was observed in 1,2,4-tritylene, toluene, and m/p-xylene species with higher ozone generation potential (OFP). In winter, the contribution of aromatic hydrocarbons to the formation potential of secondary organic aerosols (SOA) was as high as 96%, and toluene and m/p-xylene were the main contributing species to the formation potential of SOA. The main sources of VOCs in summer were motor vehicle emissions (30.9%), industrial emissions (21.2%), and solvent use sources (18.6%), and the main sources in winter were motor vehicle exhaust (35.8%), combustion sources (30.9%), and industrial sources (20.6%). The contribution of combustion sources to VOCs in winter (30.9%) was significantly higher than that in summer (17.4%). |
|
|
|