首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
有机物料还田对稻田土壤细菌群落和水稻产量的影响
摘要点击 1726  全文点击 220  投稿时间:2024-01-06  修订日期:2024-04-08
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  红壤性水稻土  有机物料还田  细菌群落结构  功能基因  水稻产量
英文关键词  red paddy soil  organic matter amendment  bacterial community structure  function genes  rice yield
作者单位E-mail
卞清 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室, 南京 210008
中国科学院大学, 北京 100049 
bianqing@issas.ac.cn 
孙波 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室, 南京 210008  
李大明 江西省红壤及种质资源研究所, 南昌 330000  
谢祖彬 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室, 南京 210008 zbxie@issas.ac.cn 
王晓玥 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室, 南京 210008 wangxy@issas.ac.cn 
中文摘要
      为探明长期有机物料还田下稻田土壤微生物群落结构及功能对水稻产量的影响,依托于40 a红壤性水稻土有机肥定位试验,选择不施肥(CK)、施化肥(NPK)、施化肥+紫云英(NG)、施化肥+紫云英+猪粪(NGM)和施化肥+紫云英+稻草(NGS)这5个处理,开展相关研究. 结果表明,有机物料还田显著提高了土壤SOC、TN和TP等养分含量和水稻产量,其中NGM处理影响最大. 并且有机物料还田显著改变了微生物群落组成,主要表现为:变形菌门,特别是α-变形菌,以及放线菌门的相对丰度增加,而硝化螺旋菌门的相对丰度减少. PICRUSt2功能预测分析结果表明,有机物料还田增加了编码淀粉(amyA)、纤维素(bglXbglBendoglucanase)和半纤维素(xylAxynA)等与易分解碳降解相关的功能基因的丰度,同时也增加了编码脲酶(ureAureBureC)、谷氨酸脱氢酶(gdhA)和谷氨酰胺酶(aspQ)等与有机氮矿化相关的功能基因的丰度. 基于随机森林模型分析,影响水稻产量的理化和生物因子包括:TP、SOC、pH、TN、DON、细菌群落组成以及有机碳降解功能基因和有机氮矿化功能基因的相对丰度. PLS-PM结果进一步表明,有机物料还田下,SOC和TP含量的增加通过改变细菌群落结构,特别是增加了α-变形菌和放线菌等富营养型细菌的相对丰度,增加了土壤有机碳、氮分解相关功能基因的相对丰度,促进养分循环,从而提高水稻产量.
英文摘要
      In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment. High-throughput sequencing highlighted that within the bacterial community, Proteobacteria (22.57%) and Nitrospirota (18.56%) dominated in abundance. The organic amendment led to a substantial shift in microbial community composition, chiefly reflected by an increase in Proteobacteria alongside a decrease in Nitrospirota. Predictive functional analyses through PICRUSt2 revealed a rise in gene abundance linked to the decomposition of organic carbon, specifically genes encoding amylase (amyA), cellulase (bglX, bglB, and endoglucanase), and hemicellulose-decomposing enzymes (xylA and xynA). Additionally, there was an observed increase in the abundance of genes facilitating organic nitrogen mineralization, such as those for urease (ureA, ureB, and ureC), glutamate dehydrogenase (gdhA), and glutamine synthetase (aspQ). The random forest model determined that several soil property indicators, including TP, SOC, pH, TN, and dissolved organic nitrogen, along with the composition of the bacterial community and the abundance of functional genes involved in the decomposition of organic carbon and nitrogen, significantly influenced the rice yields. Furthermore, PLS-PM analysis elucidated that the organic amendment boosted soil SOC and TP levels, which, by modifying the bacterial community's composition, augmented the relative abundance of genes associated with the breakdown of organic carbon and nitrogen. This process facilitated nutrient cycling, culminating in elevated rice production.

您是第83072732位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2