首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
工业化生产生物质炭对复合污染水体中四环素的吸附性能
摘要点击 1059  全文点击 152  投稿时间:2023-12-06  修订日期:2024-04-10
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  生物质炭  工业化生产  四环素  共存污染物  吸附
英文关键词  biochar  industrial production  tetracycline  coexisting pollutants  adsorption
作者单位E-mail
雷可 浙江科技大学环境与资源学院, 杭州 310023 2268229386@qq.com 
刘莉莉 浙江科技大学环境与资源学院, 杭州 310023  
张佳宏 浙江科技大学环境与资源学院, 杭州 310023  
方婧 浙江科技大学环境与资源学院, 杭州 310023
浙江省废弃生物质循环利用与生态处理技术重点实验室, 杭州 310023 
rceesfangjing@126.com 
单胜道 浙江科技大学环境与资源学院, 杭州 310023
浙江省废弃生物质循环利用与生态处理技术重点实验室, 杭州 310023 
 
中文摘要
      相比于实验室制备生物质炭,工业化生产生物质炭对水体中抗生素吸附性能的研究较少. 选取3种工业化批量生产的生物质炭(花生壳炭、污泥炭和易腐垃圾炭),较系统地研究了其对复合污染水体中四环素的吸附性能. 结果表明,Freundlich方程能较好地拟合3种生物质炭对四环素的吸附等温线,在较高四环素浓度(>10 mg·L-1)时,生物质炭对四环素的吸附能力顺序为:易腐垃圾炭>污泥炭>花生壳炭. 花生壳炭的芳香性、疏水性和比表面积对其吸附四环素具有重要影响,可能的主要吸附机制是π—π 作用、疏水性作用和孔填充作用. 污泥炭的比表面积和孔隙体积对其吸附四环素具有重要影响,可能的主要吸附机制是孔填充作用、表面络合作用和氢键作用. 易腐垃圾炭的可溶性有机碳组分和灰分对其吸附四环素具有主导作用,分配作用是主要的吸附机制,其次可能是阳离子—π作用和表面络合作用. 共存污染物对生物质炭吸附四环素的影响因生物质炭的种类而异. 随着水体中离子强度和氨氮浓度的增加,花生壳炭对四环素的吸附量总体呈小幅上升趋势,而污泥炭则呈小幅降低趋势. 易腐垃圾炭对四环素的吸附过程基本不受离子强度和氨氮的影响. 共存磷酸盐显著降低了3种生物质炭对四环素的吸附效率. 共存好氧有机物对3种生物质炭吸附四环素均没有明显影响. 污泥炭和易腐垃圾炭对水体中四环素的吸附具有很好的可循环再生能力. 研究结果为生物质炭去除水体中抗生素的工程应用提供了可靠的科学依据和理论支撑.
英文摘要
      Compared to the laboratory preparation of biochar, there is less research on the adsorption of antibiotics by industrial production of biochar in water. In this study, three types of industrial production biochar (peanut shell biochar, sludge biochar, and perishable waste biochar) were selected, and their adsorption performance for tetracycline in composite-polluted water was systematically studied. The results indicated that the Freundlich equation could well fit the adsorption isotherms of the three types of biochar for tetracycline. At medium to high concentrations (>10 mg·L-1), the order of adsorption capacity of biochar for tetracycline was: perishable waste biochar > sludge biochar > peanut shell biochar. The aromaticity, hydrophobicity, and specific surface area of peanut shell biochar had important effects on its adsorption of tetracycline. The possible main adsorption mechanisms were π—π interaction, hydrophobicity, and pore filling. The specific surface area and pore volume of sludge biochar had a significant impact on its adsorption of tetracycline, and its possible main mechanisms included pore filling, surface complexation, and hydrogen bonding. The soluble organic carbon components and ash content of perishable waste biochar played a dominant role in its adsorption, with distribution being the main adsorption mechanism, followed by cation—π interaction and surface complexation. The effect of coexisting pollutants on the adsorption of tetracycline by biochar varied with the type of biochar. With the increase in ion strength and ammonia nitrogen concentration in the water, the adsorption capacity of peanut shell biochar for tetracycline showed a slight upward trend overall, whereas sludge biochar showed a slight downward trend. The adsorption of tetracycline on perishable waste biochar was not affected by ionic strength and ammonia nitrogen. Coexisting phosphates significantly reduced the adsorption efficiency of biochar for tetracycline, while coexisting aerobic organic compounds had no significant effect on the adsorption. The adsorption of tetracycline in water by sludge biochar and perishable waste biochar had good recyclable regeneration ability. The results of this study provide a reliable scientific basis and theoretical support for the engineering application of biochar in removing antibiotics from water.

您是第75751830位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2