秋季石家庄高新区VOCs污染特征、化学活性及源解析 |
摘要点击 2064 全文点击 256 投稿时间:2024-01-19 修订日期:2024-04-20 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 挥发性有机物(VOCs) 污染特征 二次气溶胶生成潜势(SOAP) 臭氧生成潜势(OFP) 来源解析 |
英文关键词 volatile organic compounds (VOCs) pollution characteristics ozone formation potential (OFP) secondary organic aerosol formation potential (SOAP) source apportionment |
作者 | 单位 | E-mail | 张晓 | 石家庄学院地理科学与环境学院, 石家庄 050035 | zhangxiao7990@163.com | 张宁 | 南京信息工程大学环境科学与工程学院, 南京 210044 | | 韦锐 | 石家庄学院地理科学与环境学院, 石家庄 050035 | | 宿文康 | 河北省生态环境科学研究院, 石家庄 050037 | | 贺军亮 | 石家庄学院地理科学与环境学院, 石家庄 050035 | hejunliang0927@163.com | 宋昆仑 | 石家庄学院地理科学与环境学院, 石家庄 050035 | | 张苗苗 | 石家庄学院地理科学与环境学院, 石家庄 050035 | | 赵江伟 | 河北省生态环境监测中心, 石家庄 050037 | | 孟凯 | 河北省气象科学研究所, 石家庄 050021 河北省气象与生态环境重点实验室, 石家庄 050021 | | 张艳品 | 石家庄市气象局, 石家庄 050081 | |
|
中文摘要 |
基于2020年10月石家庄高新区挥发性有机物(VOCs)和臭氧(O3)在线数据,分析了VOCs污染特征,通过·OH估算、二次有机气溶胶生成潜势(SOAP)和O3生成潜势(OFP)评估了大气化学活性,利用PMF对VOCs进行源解析. 结果表明,总VOCs φ(TVOCs)介于(11 ~ 281)× 10-9,各组分体积分数由大到小依次为:OVOCs、烷烃、卤代烃、芳香烃、烯烃及炔烃. VOCs含量水平对人体造成的非致癌风险可忽略不计,但苯和乙苯已构成致癌风险. 间/对-二甲苯与乙苯比值(X/E)日变化介于2.5~3.4,测点VOCs气团为新鲜气团. 由X/E估算的·OH分子浓度为1.75×106 molecule·cm-3,07:00~14:00的·OH暴露度为3.77×1010 molecule·s·cm-3,大气VOCs有较强的SOA和O3生成能力. 芳香烃在SOA反应中起主导作用,对SOAP贡献率高达93.35%,烯烃在O3生成过程中起主导作用,对OFP贡献率高达46.79%. 源解析表明VOCs主要来自工业排放源(37.20%)、工艺流程与溶剂使用(33.80%)、移动源与油气挥发源(15.47%)、燃烧排放源(8.03%)及植物排放源(5.50%),工业排放与工艺流程排放的VOCs是区域内空气质量管控的重点. |
英文摘要 |
Utilizing the online monitoring data of volatile organic compounds (VOCs) and ozone (O3) in the Shijiazhuang high-tech industrial development zone during October 2020, the pollution characteristics of VOCs were analyzed. Subsequently, ·OH estimation, secondary organic aerosol formation potential (SOAP), and ozone formation potential (OFP) were applied to assess the chemical reactivity of VOCs. Additionally, the source apportionment was identified using the positive matrix factorization (PMF) model. The results revealed that the hourly φ[total VOCs (TVOCs)] were (11-281)×10-9, and the components were ranked by volume fraction in the following order: oxygenated volatile organic compounds (OVOCs) (60.83%), alkanes (19.98%), halohydrocarbons (5.64%), aromatics (5.91%), alkenes (4.83%), and alkynes (2.48%). Although the VOC concentration levels posed negligible non-carcinogenic risks to human health, benzene and ethylbenzene presented carcinogenic risks. The m/p-xylene to ethylbenzene ratio (X/E) varied from 2.5 to 3.4, indicating short-range transport of fresh air masses. Based on the X/E value, the ·OH concentration was 1.75×106 molecule·cm-3, and the ·OH exposure from 07:00 to 14:00 was calculated as 3.77×1010 molecule·s·cm-3. Aromatics played a dominant role in SOA, with a contribution rate as high as 93.35%, while alkenes dominated O3 formation, with the OFP contribution rate reaching up to 46.79%. By applying the PMF model, five major VOC sources were identified, including industrial sources (37.20%), process flow and solvent use (33.80%), vehicle and oil/gas evaporation sources (15.47%), combustion sources (8.03%), and plant emissions (5.50%). Industrial and process emissions emerged as the primary contributors to VOCs in the ambient air of the high-tech zone, necessitating targeted control measures within this region. |
|
|
|