首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
苏州市PM2.5和O3污染特征、输送路径及潜在源区分析
摘要点击 1790  全文点击 392  投稿时间:2023-10-27  修订日期:2024-02-13
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  PM2.5  O3  污染特征  后向轨迹  输送路径  潜在源区
英文关键词  PM2.5  O3  pollution characteristics  backward trajectory  transport pathway  potential source contribution
作者单位E-mail
杨洁 苏州科技大学环境科学与工程学院, 苏州 215009 yjagnes@163.com 
郑嘉兴 苏州科技大学环境科学与工程学院, 苏州 215009  
徐婷婷 苏州科技大学环境科学与工程学院, 苏州 215009  
吴雨涟 苏州科技大学环境科学与工程学院, 苏州 215009  
阚诗烨 苏州科技大学环境科学与工程学院, 苏州 215009  
沈春其 苏州科技大学环境科学与工程学院, 苏州 215009  
邵智娟 苏州科技大学环境科学与工程学院, 苏州 215009 shaozhijuan@usts.edu.cn 
中文摘要
      基于2015~2022年苏州市PM2.5和O3浓度及其气象资料,分析两种污染物浓度的长期变化特征和不同污染类型时的气象特征,采用HYSPLIT后向轨迹模型和聚类分析等方法,分析PM2.5和O3主要输送路径和潜在源区.结果表明:①2015~2022年,苏州市PM2.5年浓度均值逐年下降,2020~2022年年浓度均值达到国家二级标准;O3年评价值在163~173 μg·m-3之间,均超出国家二级标准;2017之后,O3的年超标天数始终高于PM2.5;复合污染天数自2015年的9 d持续下降至2020年的0 d,此后未出现复合污染.②PM2.5和O3污染最严重季节分别在冬季和夏季;PM2.5污染易出现在低温高湿的天气,O3污染易出现在高温低湿的天气;PM2.5和O3分别在西北和东南风向上污染较为严重;PM2.5和O3在夏季呈现强正相关性,相关系数最高达0.73. ③通过聚类分析发现,春季来自河北省的内陆中短距离轨迹2和冬季来自陕西省的内陆中短距离轨迹4容易造成PM2.5浓度增加;夏季来自山东省的内陆中短距离轨迹1和春季来自河北省的轨迹2容易造成O3浓度增加. ④潜在源区分析表明,PM2.5在春冬季节的潜在源区主要分布在安徽省、河南省和湖北省,秋季时的潜在源区主要位于湖北省和江西省等地区.春夏季O3的潜在源区主要位于京津冀地区、山东省、河南省和山西省等地区.最后提出推进苏州市PM2.5与O3污染协同控制工作的相关建议.
英文摘要
      Based on the air quality and meteorological data in Suzhou from 2015 to 2022, the long-term variations in PM2.5 and O3, meteorological characteristics, and their correlations were analyzed in this study. The HYSPLIT model was used to explore the main transport pathways and potential source areas of PM2.5 and O3. The results showed that: ① The annual averaged concentrations of PM2.5 in Suzhou decreased steadily during the study period, and the annual average concentration from 2020 to 2022 reached the national second-level standard limit. However, the annual average concentrations of O3 all exceeded the national second-level standard limit. After 2017, the annual number of days that O3 exceeded the standard was always higher than that for PM2.5. The number of days of compound pollution continuously decreased from nine days in 2015 to zero days in 2020, and there was no compound pollution since then. ② The most severe pollution seasons for PM2.5 and O3 were winter and summer, respectively. PM2.5 pollution was more likely to occur in low-temperature and high-humidity weather, while O3 pollution was more frequent in high-temperature and low-humidity weather. Wind direction played an important role, with northwest winds amplifying PM2.5 pollution and southeast winds boosting O3. These two pollutants showed a strong correlation in summer with a coefficient reaching 0.73. ③ Cluster analysis revealed that trajectory two from Hebei Province in spring and trajectory four from Shaanxi Province in winter were prone to an increase in PM2.5 concentration. The short to medium distance trajectory 1 from Shandong Province in summer and trajectory two from Hebei Province in spring were prone to an increase in O3 concentration. ④ The analysis of potential source areas showed that transportation outside the province had a significant impact on PM2.5 and O3 pollution in Suzhou. The potential source areas of PM2.5 in spring and winter were mainly distributed in Anhui Province, Henan Province, and Hubei Province; the potential source areas in autumn were mainly distributed in Hubei Province and Jiangxi Province; and the potential source areas of O3 in spring and summer were mainly located in the Beijing-Tianjin-Hebei Region, Shandong Province, Henan Province, and Shanxi Province. Valuable management insights for the coordinated control of PM2.5 and O3 pollution in Suzhou were put forward based on this study.

您是第75746510位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2