首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
京津冀及其周边地区PM2.5和臭氧的时空变化及多尺度社会经济驱动因素分析
摘要点击 4120  全文点击 699  投稿时间:2023-11-01  修订日期:2024-02-21
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  PM2.5  臭氧(O3  地理探测  时空地理加权回归(GTWR)模型  驱动因素
英文关键词  PM2.5  ozone(O3  geographical detector  geographically and temporally weighted regression(GTWR) model  driving factors
作者单位E-mail
燕丽 北京师范大学环境学院, 北京 100875
生态环境部环境规划院, 北京 100043
京津冀区域生态环境研究中心, 北京 100043 
yanli@caep.org.cn 
宋小涵 聊城大学地理与环境学院, 聊城 252000  
雷宇 生态环境部环境规划院, 北京 100043  
田贺忠 北京师范大学环境学院, 北京 100875 hztian@bnu.edu.cn 
中文摘要
      基于2015~2020年京津冀及周边地区PM2.5和O3遥感浓度数据,利用趋势分析、地理探测和时空地理加权回归方法定量研究多尺度PM2.5和O3浓度的时空分异特征及关键社会经济驱动因素影响机制. 结果表明: ①PM2.5浓度变化的变化斜率在-12.93~0.43 μg·(m3·a)-1之间,O3浓度变化斜率在0.70~14.90 μg·(m3·a)-1之间,PM2.5冬季下降幅度最大,O3夏季上升幅度最大;②PM2.5和O3浓度均具有空间相关性,PM2.5的H-H聚集位于河北省南部和河南省北部;O3的空间聚类格局变化较大. ③从区域尺度来看,GDP、人口密度和民用汽车保有量对PM2.5解释力较强,GDP、城镇化和民用汽车保有量对O3解释力较强. 2016年和2020年的主导交互因子相同,分别为人口密度∩第二产业比例和城镇化∩路网密度. ④从城市尺度来看,人口密度、工业氮氧化物排放量和用电量对PM2.5和O3污染主要呈正效应,成为城市尺度控制PM2.5和O3污染需要重点关注的社会经济驱动因素.
英文摘要
      Based on PM2.5 and O3 remote sensing concentration data in Beijing-Tianjin-Hebei and its surrounding areas from 2015 to 2020, we used trend analysis, geographic detectors, and a geographically and temporally weighted regression model to explore the spatiotemporal characteristics and key driving socio-economic factors of multi-scale PM2.5 and O3 concentrations. The results indicated that: ① The changing slope of PM2.5 concentration ranged from -12.93 to 0.43 μg·(m3·a)-1, and the changing slope of O3 concentration ranged from 0.70 to 14.90 μg·(m3·a)-1. The decreasing slope of PM2.5 concentration was the largest in winter, and the increasing slope of O3 concentration was the largest in summer. ② The concentrations of PM2.5 and O3 were spatially correlated, and the H-H concentrations of PM2.5 were located in the southern Hebei Province and the northern Henan Province. The spatial clustering pattern of O3 changed greatly. ③ From the perspective of urban agglomeration, the GDP, population density, and civilian car ownership had a strong explanatory power for PM2.5, while GDP, urbanization rate, and civilian car ownership had a strong explanatory power for O3. The dominant interaction factors of 2016 and 2020 were the population density∩the proportion of the secondary industry and urbanization rate∩road network density, respectively. ④ From the perspective of single city, population density, industrial nitrogen oxide emissions, and electricity consumption had mainly positive effects on PM2.5 and O3 pollution and became the socio-economic driving factors that need to be focused on to control PM2.5 and O3 co-pollution.

您是第75747465位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2