退耕还林(草)工程前后黄河流域生态系统碳储量时空演变与模拟预测 |
摘要点击 1361 全文点击 258 投稿时间:2023-10-07 修订日期:2024-01-09 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 黄河流域 碳储量 时空演变特征 未来趋势 PLUS模型 InVEST模型 |
英文关键词 Yellow River Basin carbon storage spatiotemporal evolutionary characteristics future trends PLUS model InVEST model |
作者 | 单位 | E-mail | 段绪萌 | 山东师范大学地理与环境学院, 黄河三角洲水土资源保护和高质量发展特色实验室, 济南 250358 | duanxumeng2022@126.com | 韩美 | 山东师范大学地理与环境学院, 黄河三角洲水土资源保护和高质量发展特色实验室, 济南 250358 | hanmei568568@126.com | 孔祥伦 | 山东师范大学地理与环境学院, 黄河三角洲水土资源保护和高质量发展特色实验室, 济南 250358 | | 孙金欣 | 山东师范大学地理与环境学院, 黄河三角洲水土资源保护和高质量发展特色实验室, 济南 250358 | | 张慧欣 | 山东师范大学地理与环境学院, 黄河三角洲水土资源保护和高质量发展特色实验室, 济南 250358 | |
|
中文摘要 |
“双碳”背景下,探讨退耕还林(草)工程实施对黄河流域生态系统碳储量的影响,对于完善新一轮退耕还林(草)工程政策实施,提高黄河流域生态系统碳汇能力具有重要参考意义. 选取退耕还林(草)工程实施前的1990年作为研究时段的起始年,选择两轮工程实施结束后的2020年作为研究时段的终了年,基于1990~2020年的30 a生态系统类型数据,运用InVEST模型对1990~2020年间黄河流域工程实施区域生态系统的土壤碳库、地上碳库、地下碳库、死亡有机质碳库及总碳储量进行逐年核算. 基于2020年生态类型数据,运用PLUS模型对2035年自然发展、深度退耕、中度退耕和耕地保护这4种情景的生态系统栅格数据进行预测,进而测算生态系统的总碳储量. 结果表明:①1990~2020年,黄河流域森林生态系统的面积在两轮工程实施后扩张26 610.06 km2,农田面积减少46 849.06 km2;空间上,黄河上游以草地、其他生态系统为主,黄河中游主要以农田、森林和草地生态系统分布为主,黄河下游以农田生态系统为主;②1990~2020年工程实施区碳储量呈波动增加趋势,2009年时总碳储量达到峰值(219.47×108 t),2010~2020年由于草地生态系统的减少导致总碳储量波动下降至2020年的218.59×108 t;空间上,碳储量高值区分布在林草聚集的上游四川阿坝藏族羌族自治州、甘肃南部等和中游山西全域、陕西中南部等,陕西商洛和内蒙古的阿拉善盟为平均碳密度最高和最低的地级市;③2035年的自然发展情景碳储量损失0.83×108 t,其余3种情景均增加. 中度退耕情景下,黄河流域生态系统固碳能力最强,预测碳储量比2020年增加2.72×108 t,深度退耕情景为综合性最优情景. 因此,未来黄河流域可以参考深度退耕情景来优化调整退耕还林(草)工程实施方案,同时碳储量预测值可为实现双碳目标提供一定数据支持. |
英文摘要 |
Under the background of “dual carbon”, the impact of the implementation of the Grain for Green project on the carbon storage of the ecosystem in the Yellow River Basin must be explored, which can serve as an important reference for improving the policy implementation of the new round of the Grain for Green project and improving the carbon sink capacity of the ecosystem in the Yellow River Basin. In this study, 1990, before the implementation of the project, was selected as the starting year of the research period, and 2020, after the implementation of the two rounds of the project, was selected as the end year of the research period. Based on the ecosystem type data from 1990 to 2020, the InVEST model was used to calculate the soil carbon pool, underground carbon pool, below carbon pool, dead organic matter carbon pool, and total carbon storage of ecosystems in the Yellow River Basin and the area where the project was implemented from 1990 to 2020. The results showed that: ① From 1990 to 2020, the area of forest ecosystem in the Yellow River Basin expanded by 26 610.06 km2, and the area of farmland decreased by 46 849.06 km2 after the implementation of two rounds of the project. Spatially, the upper reaches of the Yellow River were dominated by grassland and other ecosystems; the middle reaches of the Yellow River were dominated by farmland, forest, and grassland ecosystems; and the lower reaches of the Yellow River were dominated by farmland ecosystems. ② From 1990 to 2020, the carbon storage in the project implementation area showed a fluctuating and increasing trend, and the total carbon storage reached a peak (219.47×108 t) in 2009 and decreased to 218.59×108 t in 2020 due to the decrease of grassland ecosystem from 2010 to 2020. Spatially, the high-value areas of carbon storage were distributed in Aba Tibetan and Qiang Autonomous Prefecture of Sichuan Province and the southern tip of Gansu Province in the upper reaches of the forest and grass accumulation and in the whole of Shanxi Province and the central and southern parts of Shaanxi Province in the middle reaches. Shangluo City in Shaanxi Province and Alxa League in Inner Mongolia Autonomous Region were prefecture-level cities with the highest and lowest average carbon density. ③ In 2035, the carbon storage loss of the natural development scenario was predicted to be 0.83×108 t, and the other three scenarios would increase this loss. Under the moderate farmland return scenario, the Yellow River Basin ecosystem had the strongest carbon sequestration capacity, and the predicted carbon storage would increase by 2.72×108 t compared with that in 2020, and the deep farmland return scenario was the comprehensive optimal scenario. Therefore, in the future, the Yellow River Basin could refer to the deep farmland return scenario to optimize and adjust the implementation plan of the Grain for Green project, and the predicted value of carbon storage can provide some data support for achieving the dual carbon goal. |
|
|
|