基于PMF模型和地理探测器的土壤重金属源解析及影响因素分析 |
摘要点击 2243 全文点击 651 投稿时间:2023-09-29 修订日期:2023-12-03 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 重金属污染 PMF模型 地理探测器 影响因子 源解析 |
英文关键词 heavy metal pollution PMF model GeoDetector impact factors source analysis |
作者 | 单位 | E-mail | 孙思静 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 云南农业大学水利学院, 昆明 650000 | sunsijwxsa@163.com | 董春雨 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 | | 张好 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 云南农业大学水利学院, 昆明 650000 | | 杨海婵 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 | | 黄祖志 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 | | 韩宇 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 | | 张乃明 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 | | 包立 | 云南农业大学资源与环境学院, 昆明 650000 云南省土壤培肥与污染修复工程研究中心, 昆明 650000 | bbllty@163.com |
|
中文摘要 |
以丽江市为例,在研究区内采集93个土壤样品,测定土壤pH、 有机质、 重金属砷(As)、 汞(Hg)、 铜(Cu)、 锌(Zn)、 铅(Pb)、 镉(Cd)和铬(Cr).通过正定矩阵因子分解(PMF)模型探讨研究区内的重金属来源,将7种重金属与13个影响因子结合地理探测器分析影响因素的影响力.结果表明,研究区内的土壤重金属ω(As)、 ω(Hg)、 ω(Cu)、 ω(Zn)、 ω(Pb)、 ω(Cd)和ω(Cr)的均值分别为17.55、 0.19、 86.75、 164.84、 28.95、 0.39和167.87 mg·kg-1,除As和Pb外均超过云南省土壤背景值;在空间分布上,Cu和Cr的含量高值主要集中在玉龙纳西族自治县,As、 Hg、 Pb和Cd的高值区主要在宁蒗彝族自治县,Zn含量高值主要集中于华坪县;通过相关性分析和PMF模型发现研究区内重金属As和Hg的主要来源是工业源,Zn的主要来源是交通污染源,Cr和Cu的主要来源是自然源,Cd和Pb的主要来源是农业源;经过地理探测器的因子探测器发现,土壤pH和有机质(OC)对7种重金属含量具有较强的解释力;交互探测发现,不同影响因子交互后的结果为非线性增强或双因子增强,其中,OC和pH交互作用是重金属空间分异的主导因素,为丽江市的土壤环境健康保护和可持续发展提供重要的科学依据. |
英文摘要 |
In Lijiang City, as a typical example, 93 soil samples were collected from the study area, and soil pH; organic matter; and heavy metals arsenic (As), mercury (Hg), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and chromium (Cr) were determined. We explored the sources of heavy metals in the study area by means of Positive Definite Matrix Factorization (PMF) modeling and analyzed the impact of influencing factors by combining seven heavy metals with 13 influencing factors in a GeoDetector. The results showed that the mean values of soil heavy metals ω(As), ω(Hg), ω(Cu), ω(Zn), ω(Pb), ω(Cd), and ω(Cr) in the study area were 17.55, 0.19, 86.75, 164.84, 28.95, 0.39, and 167.87 mg·kg-1, respectively, which were greater than the background values of soils in Yunnan Province (except for As and Pb). Regarding spatial distribution, the high values of Cu and Cr content were mainly concentrated in Yulong Naxi Autonomous County; the high value areas of As, Hg, Pb, and Cd were mainly concentrated in Ninglang Yi Autonomous County; and the high value of Zn content was mainly concentrated in Huaping County. Correlation analysis and PMF modeling revealed that the main sources of heavy metals As and Hg in the study area were industrial sources, Zn was from transportation pollution sources, Cr and Cu were from natural sources, and Cd and Pb were from agricultural sources. Further, the factor detector of the GeoDetector found that soil pH and organic matter (OC) had strong explanatory power for the content of seven heavy metals, and the interaction detector found that the results following the interaction of different influencing factors were nonlinear enhancement or two-factor enhancement, in which the interaction of OC and pH was the dominant factor for the spatial differentiation of heavy metals. This provides an important scientific basis for the protection of the soil environmental health and sustainable development in Lijiang City. |
|
|
|