贵州乌都河流域雨季河水水化学特征及其控制因素 |
摘要点击 2219 全文点击 874 投稿时间:2022-11-11 修订日期:2022-12-19 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 贵州 乌都河流域 河水 水化学特征 控制因素 |
英文关键词 Guizhou Province Wudu River Basin river water hydrochemical characteristics controlling factor |
|
中文摘要 |
乌都河是贵州西部典型的矿业型岩溶山地流域.对乌都河流域干流、支流、泉水和矿井水进行采样分析,通过Gibbs图、Piper图和数理统计分析等方法,研究了乌都河流域水化学特征及控制因素,并计算了不同因子对河水的贡献率.结果表明,乌都河流域水体pH值范围为7.87~8.52,均值为8.14;ρ(TDS)范围为135~243 mg ·L-1,均值为191.7 mg ·L-1.天然河水和泉水中阳离子以Ca2+和Mg2+为主,阴离子以HCO3-为主,水化学类型为HCO3-Ca型;但受矿业活动影响后,部分支流河水中阳离子以Ca2+和Na+为主,水化学类型过渡为HCO3 ·SO4-Ca和HCO3 ·SO4-Ca ·Na型.乌都河流域河水离子组分受矿井水排放和阳离子交换作用、碳酸盐岩风化、硅酸盐岩风化和农业施肥这4个因子的影响.矿井水中具有较高浓度的SO42-和Na+,是乌都河支流河水中SO42-和Na+的主要来源.化学物质平衡法计算表明,碳酸盐岩风化的贡献率为44.12%~86.92%,均值为74.32%;矿业活动的贡献率为3.28%~37.07%,均值为11.61%;碳酸盐岩风化是乌都河流域河水水化学的主控因素,矿业活动对河水水化学组分也有不可忽视的贡献.大气降水、硅酸盐岩风化、农业活动和生活污水的贡献率均值分别为3.75%、4.67%、2.85%和2.81%,对流域水化学的影响有限. |
英文摘要 |
TheWudu River is a typical mining-type watershed in the karst mountainous area of western Guizhou Province. Based on the collection of the main stream, tributaries, spring water, and mine water samples in Wudu River Basin, the hydrochemical characteristics and control factors of Wudu River Basin were studied using Gibbs diagram, Piper diagram, and mathematical statistics analysis, and the solute contribution rate of different sources was calculated. The results revealed that the pH value of the water in the Wudu River Basin ranged from 7.87 to 8.52, with an average of 8.14. The TDS values ranged from 135 to 243 mg·L-1, with an average of 191.7 mg·L-1. The major cations in natural river and spring water were Ca2+ and Mg2+, the major anion was HCO3-, and the hydrochemical type was HCO3-Ca. However, owing to the influence of mining activities, the major cations in some tributaries were Ca2+ and Na+, and the hydrochemical types transitioned to HCO3·SO4-Ca and HCO3·SO4-Ca·Na. The ion components of river water in Wudu River Basin were affected by mine water discharge and cation exchange, carbonate rock weathering, silicate rock weathering, and agricultural fertilization. The high concentration of SO42- and Na+in mine water was the primary source of SO42- and Na+in the tributaries of the Wudu River. The method for calculating chemical material balance showed that the contribution rate of carbonate rock weathering ranged from 44.12% to 86.92%, with an average of 74.32%. The contribution rate of mining activities ranged from 3.28% to 37.07%, with an average of 11.61%. Carbonate rock weathering was the main controlling factor of hydrochemical components in the Wudu River Basin; meanwhile, mining activities also had a certain impact on river water chemistry but they showed spatial heterogeneity. The average contribution rates of atmospheric precipitation, silicate rock weathering, agricultural activities, and domestic sewage were 3.75%, 4.67%, 2.85%, and 2.81%, respectively, which had a limited impact on the hydrochemical components of the basin. |
|
|
|