石河子-昌吉地区地下水水质时空变化及污染源解析 |
摘要点击 3465 全文点击 1022 投稿时间:2022-04-13 修订日期:2022-06-08 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 地下水 水质评价 贝叶斯水质模型 时空变化 主成分分析 绝对主成分得分-多元线性回归受体模型(APCS-MLR) 源解析 石河子-昌吉地区 |
英文关键词 groundwater water quality assessment Bayesian water quality evaluation model spatial-temporal variation principal component analysis absolute principal component scores-multiple linear regression receptor model (APCS-MLR) source analysis Shihezi-Changji area |
作者 | 单位 | E-mail | 丁启振 | 新疆农业大学水利与土木工程学院, 乌鲁木齐 830052 新疆水文水资源工程技术研究中心, 乌鲁木齐 830052 新疆水利工程安全与水灾害防治重点实验室, 乌鲁木齐 830052 | 1650655141@qq.com | 周金龙 | 新疆农业大学水利与土木工程学院, 乌鲁木齐 830052 新疆水文水资源工程技术研究中心, 乌鲁木齐 830052 新疆水利工程安全与水灾害防治重点实验室, 乌鲁木齐 830052 | zjzhoujl@163.com | 季彦桢 | 新疆昌吉州地质环境监测站, 昌吉 831100 | | 杨方源 | 新疆农业大学水利与土木工程学院, 乌鲁木齐 830052 新疆水文水资源工程技术研究中心, 乌鲁木齐 830052 新疆农业大学数理学院, 乌鲁木齐 830052 | | 张淑霞 | 新疆昌吉州地质环境监测站, 昌吉 831100 | |
|
中文摘要 |
为了探明新疆石河子-昌吉地区地下水水质时空变化并解析污染源,综合运用基于香农熵的贝叶斯水质评价模型、Spearman秩相关系数、主成分分析和绝对主成分得分-多元线性回归受体模型(APCS-MLR)等方法,对23眼原位井2016~2021年逐年地下水水质数据进行分析.结果表明:①研究区多年地下水水质状况总体较好,潜水水质类别以Ⅰ类和Ⅱ类为主,承压水主要为Ⅰ类.②从时间看,2016年和2017年分别为潜水和承压水水质变化的关键时间节点,Ⅳ类和Ⅴ类水仅出现在节点之前,之后在Ⅰ~Ⅲ类水范围内波动.③从空间看,潜水水质优劣排序为:石河子市≈呼图壁县>玛纳斯县>昌吉市;承压水为:石河子市≈昌吉市>呼图壁县>玛纳斯县.④研究区多年地下水水质类别和主要水质指标在时空变化上基本对应,且异质性较强.⑤潜水水质主要受到溶滤作用(67.30%)、溶滤-迁移作用(10.89%)和农业-生活污染(9.44%)的影响,溶滤-富集作用(52.08%)、农业-生活污染(16.06%)和碱性环境的离子交换作用(12.64%)对承压水水质影响较大.尽管研究区多年水质状况整体呈改善趋势,但未来玛纳斯县北部149团的地下水盐化问题需重点关注. |
英文摘要 |
To analyze spatial-temporal variation in groundwater quality and contamination sources in the Shihezi-Changji area in Xinjiang, a Bayesian water quality evaluation model based on Shannon entropy, Spearman rank correlation coefficient, principal component analysis, and an absolute principal component scores-multiple linear regression receptor model (APCS-MLR) were comprehensively used in this study. Groundwater samples in 23 in-situ wells were collected from 2016 to 2021 for quality analysis. The results showed that ① groundwater quality was generally good, with most samples having a phreatic water quality of Class Ⅰ and Class Ⅱ and most confined groundwater quality being of Class Ⅰ. ② Temporally, 2016 and 2017 were the key time nodes of water quality variation in phreatic water and confined groundwater, respectively. Class Ⅳ and Class Ⅴ groundwater was observed only before the key time nodes, whereas after those time nodes the groundwater quality fluctuated within Class Ⅰ to Class Ⅲ. ③ Spatially, the order of phreatic water quality in descending order was Shihezi City, Hutubi county, Manas county, and Changji City, whereas that of confined groundwater quality was:Shihezi City and Changji City, Hutubi county, and Manas county. ④ The spatial-temporal variations in groundwater quality and that in major related indices were basically similar and highly heterogeneous. ⑤ Phreatic water quality was mainly affected by leaching (67.30%), leaching-migration (10.89%), and agricultural-domestic pollution (9.44%); by contrast, unconfined groundwater quality was mainly affected by leaching-enrichment (52.08%), agricultural-domestic pollution (16.06%), and ion exchange under an alkaline environment (12.64%). Although groundwater quality was improved over the years, more attention should be paid to groundwater salinization in the 149 Regiment in northern Manas County. |
|
|
|