首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
“双碳”目标下钢铁行业控煤降碳路线图
摘要点击 868  全文点击 362  投稿时间:2022-01-10  修订日期:2022-02-14
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  钢铁行业  碳达峰  控煤  路线图  电炉短流程  废钢利用
英文关键词  steel industry  carbon peaking  coal control  roadmap  electric arc furnace  scrap steel utilization
作者单位E-mail
薛英岚 生态环境部环境规划院, 国家环境保护环境规划与政策模拟重点实验室, 北京 100012
生态环境部环境规划院, 京津冀区域生态环境研究中心, 北京 100012
中国科学院科技战略咨询研究院, 北京 100190 
xueyl@casisd.cn 
张静 生态环境部环境规划院, 国家环境保护环境规划与政策模拟重点实验室, 北京 100012
生态环境部环境规划院, 京津冀区域生态环境研究中心, 北京 100012 
 
刘宇 中国科学院科技战略咨询研究院, 北京 100190  
陈瑜 冶金工业经济发展研究中心, 北京 100010  
孙健 首钢集团有限公司技术研究院, 100043  
蒋洪强 生态环境部环境规划院, 国家环境保护环境规划与政策模拟重点实验室, 北京 100012
生态环境部环境规划院, 京津冀区域生态环境研究中心, 北京 100012 
 
张伟 生态环境部环境规划院, 国家环境保护环境规划与政策模拟重点实验室, 北京 100012
生态环境部环境规划院, 京津冀区域生态环境研究中心, 北京 100012 
 
曹东 生态环境部环境规划院, 国家环境保护环境规划与政策模拟重点实验室, 北京 100012
生态环境部环境规划院, 京津冀区域生态环境研究中心, 北京 100012 
caodong@caep.org.cn 
中文摘要
      钢铁行业的低碳绿色转型和率先煤耗和碳排放达峰,将对我国实现整体碳达峰目标和经济高质量发展作出重要贡献.基于碳排放-能源集成模型,对我国钢铁行业"双碳"目标下控煤降碳路径开展情景研究.结果表明,我国钢铁行业很有可能在"十四五"前期实现碳达峰,峰值16.4~16.7亿t (含过程和间接排放),作为主要消费能源的煤炭也将一起达峰,峰值4.6~4.7亿t标煤(含焦炭),在最激进的强化情景2035年煤炭消费和碳排放将降至2020年的38%和49%;粗钢产量很大程度上主导了钢铁行业的碳达峰进程,推进全废钢电炉短流程和加大废钢利用是碳达峰阶段最主要的控煤降碳措施.基于预测结果提出的钢铁行业控煤降碳路线图显示,需求侧方面,粗钢产量在不考虑"双碳"目标约束的情况下也会随工业化、城镇化水平逐渐达到发达国家水平而达到峰值并开始下降,新能源相关基础设施建设在实现碳中和期间带来的钢材需求增长体量相对有限;技术进步方面,推广长流程节能降碳技术应用是短期内性价比较高的措施,应重点推进高炉高效喷煤等技术的应用,同时增大高炉球团矿平均配比,远期碳捕集封存技术将具有较大的碳减排潜力;产能结构方面,推进全废钢电炉短流程是钢铁行业在碳达峰阶段的主要措施,到"十四五"末期电炉钢占比将提高至15%~20%,在碳中和目标下氢冶金是唯一具有超低碳排放潜力的生产工艺,在未来随着可再生能源或余热余能生产的绿氢供应量提高,氢冶金将成为与基于废钢的电炉短流程并重的钢铁生产工艺.
英文摘要
      The low-carbon green transformation and the earlier peak in coal consumption and carbon emissions of the steel industry will make important contributions to the overall carbon peaking goal and high-quality economic development in China. Based on the carbon emission-energy integration model, we conducted a scenario study on the path of coal control and carbon reduction under the "carbon peak and neutralization" target of the steel industry. The results showed that the steel industry is likely to achieve a carbon peak in the early stage of the "14th Five-Year Plan," with a peak value of 1.64-1.67 billion tons (including process and indirect emissions), and coal will also peak together as the main form of energy consumption, with a peak value of 460-470 million tons of standard coal (including coke). In the most aggressive intensification scenario, coal consumption and carbon emissions will drop to 38% and 49%, respectively, in 2035. The yield of crude steel will largely dominate the carbon peaking of the steel industry. Promoting the short process of all-scrap electric furnaces and increasing the utilization of scrap steel are the most important measures to control coal and reduce carbon in the carbon peak stage. The roadmap for coal control and carbon reduction based on the forecasted results showed that, on the demand side, the yield of crude steel will reach its peak and begin to decline, with the level of industrialization and urbanization gradually reaching the level of developed countries, even without considering the constraints of the carbon peak and neutralization target, the growth of steel demand brought about by the construction of new energy-related infrastructure during the period of achieving carbon neutrality is relatively limited. In terms of technological progress, promoting the application of long-process energy-saving and carbon-reducing technology is a cost-effective measure in the short term, and by increasing the average ratio of blast furnace pellets at the same time, the carbon capture and storage technology will have greater carbon emission reduction potential in the long term. In terms of production capacity structure, promoting the short process of all-scrap electric furnaces is the main measure of the steel industry in the carbon peak stage, and the proportion of electric furnace steel will increase to 15%-20% by the end of the "14th Five-Year Plan" period. Under the carbon neutrality target, hydrogen metallurgy is the only production process with ultra-low carbon emission potential. In the future, with the increase in the supply of green hydrogen produced by renewable energy or waste heat, hydrogen metallurgy will become a steel production process that is as important as the short process of electric furnaces based on scrap steel.

您是第38355541位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2