首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
再生水河道浮游微生物多样性季节变化分析:以北运河为例
摘要点击 4630  全文点击 562  投稿时间:2021-12-02  修订日期:2022-01-08
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  再生水  城市河道  微生物多样性  季节变化  环境解释
英文关键词  reclaimed water  urban river  microbial diversity  seasonal changes  environmental interpretation
作者单位E-mail
袁训超 首都师范大学资源环境与旅游学院, 北京 100048 757712689@qq.com 
王敏 首都师范大学资源环境与旅游学院, 北京 100048  
郭逍宇 首都师范大学资源环境与旅游学院, 北京 100048  
吴东丽 中国气象局气象探测中心, 北京 100081 wudongli666@126.com 
中文摘要
      浮游微生物作为分解者在城市水生生态系统发挥重要作用,但外界环境变化显著影响其在污染物降解和转化过程的作用.以高度人工化的北运河为研究区域,利用16S rRNA高通量测序结果分析了浮游微生物群落结构的季节变化,以揭示以再生水为主要补给水源的城市河道浮游微生物多样性季节变化机制及其与环境因子的响应关系.结果表明,浮游微生物群落多样性和群落结构组成存在显著的季节变化.季节性降雨和再生水补给物理扰动过程引起的水体扩散能力增强是夏季α多样性显著高于春季的直接原因,同时减弱了夏季浮游微生物群落多样性空间分化程度.季节性径流和温度是影响高度人工化城市河道水文水质季节变化的主要原因,由于季节性径流和温度变化引起的ČNO2--N和TP变化是河道浮游微生物多样性变化的主要原因.春季季节性断流导致的北运河水体还原性状态,使得春季水体中富集的细菌大都为厌氧菌,如与溶解性有机物降解有关的拟杆菌门(Bacteroidetes)和与反硝化过程有关的纤细菌门(Gracilibacteria)等.而夏季季节性径流和频繁降雨以及河道闸坝、闸门开闭频率增高引起的水体复氧能力增强,一方面显著缓解河道营养物质污染,另一方面使得夏季水体中富集的细菌大多为好氧菌或兼性厌氧菌,如具有嗜高温特性的蓝藻(Cyanobacteria)和绿弯菌门(Chloroflexi)等自养微生物,以及在污染物降解转化过程中有重要作用的酸杆菌门(Acidobacteria)和芽单胞菌门(Gemmatimonadetes)等.研究结果对以再生水为补给水源的城市河道污染治理和生态修复有实际指导意义.
英文摘要
      Planktonic microorganisms play an important role in urban aquatic ecosystems; however, environmental changes significantly affect their role in the degradation and transformation of pollutants. The highly artificial North Canal River was chosen as the research area in this study. Seasonal changes in planktonic microbial community structure were studied using 16S rRNA high-throughput sequencing. The seasonal change mechanism of planktonic microbial diversity in urban rivers supplied with reclaimed water and its response relationship with environmental parameters were examined. The results showed that there were significant seasonal changes in the diversity and structure of the planktonic microbial community. The alpha diversity in summer was significantly higher than that in spring, owing to the enhancement of water diffusion capacity caused by seasonal rainfall and physical disturbance of the reclaimed water supply. The beta diversity of the planktonic microbial community in summer was weakened compared to that in spring, also owing to the enhancement of water diffusion capacity. Seasonal runoff and temperature were the main driving factors of the seasonal variation in hydrology and water quality in the highly artificial urban river. The changes in NO2--N and TP caused by seasonal runoff and temperature change were the main reason for planktonic microbial diversity changes in the river. The reductive environment of the river was caused by static and discontinuous flow in the spring. Anaerobic bacteria such as Bacteroidetes related to the degradation of dissolved organic matter and Gracilibacteria related to the denitrification process were dominant in the river. Seasonal runoff and frequent rainfall in summer, as well as the increase in the opening and closing frequency of river sluice gates, enhanced the reoxygenation capacity of the river. This significantly alleviated nutrient pollution in the North River Cannel. Additionally, aerobic bacteria and facultative anaerobic bacteria were dominant species in the river during spring. Cyanobacteria with high temperature characteristics, Chloroflexi and other autotrophic microorganisms, as well as Acidobacteria and Gemmatimonadetes played an important role in the degradation and transformation of pollutants. The results of this study have practical significance for urban river pollution control and ecological restoration with reclaimed water as the recharge water source.

您是第52811012位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2