基于过程分析的京津冀区域典型城市臭氧成因 |
摘要点击 3407 全文点击 1244 投稿时间:2021-09-16 修订日期:2021-10-22 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 臭氧(O3) WRF-Chem模式 过程分析 污染特征 京津冀 |
英文关键词 ozone(O3) WRF-Chem model processes analysis pollution characteristics Beijing-Tianjin-Hebei |
作者 | 单位 | E-mail | 唐颖潇 | 天津市环境气象中心, 中国气象局-南开大学大气环境与健康研究联合实验室, 天津 300074 | tangyingx@163.com | 姚青 | 天津市环境气象中心, 中国气象局-南开大学大气环境与健康研究联合实验室, 天津 300074 | yao.qing@163.com | 蔡子颖 | 天津市环境气象中心, 中国气象局-南开大学大气环境与健康研究联合实验室, 天津 300074 | | 丁净 | 天津市环境气象中心, 中国气象局-南开大学大气环境与健康研究联合实验室, 天津 300074 | | 樊文雁 | 天津市环境气象中心, 中国气象局-南开大学大气环境与健康研究联合实验室, 天津 300074 | | 杨旭 | 天津市环境气象中心, 中国气象局-南开大学大气环境与健康研究联合实验室, 天津 300074 | | 韩素芹 | 天津市环境气象中心, 中国气象局-南开大学大气环境与健康研究联合实验室, 天津 300074 | |
|
中文摘要 |
随着京津冀区域臭氧(O3)污染问题日渐突出,探究和分析京津冀区域O3变化特征和污染过程形成原因对区域大气污染防治工作具有重要意义.观测结果显示,春夏季京津冀区域较高的O3浓度呈现南高北低的分布,北京、天津和石家庄这3座城市O3高浓度往往伴随着偏南风的影响.基于WRF-Chem模式模拟和过程分析技术对2019年京津冀区域O3变化特征和成因进行了深入分析,典型城市化学过程、垂直混合和输送的日变化有着鲜明的季节变化差异.其中在夏季午后化学过程是各城市O3浓度增加的主要来源;垂直混合导致天津和石家庄O3浓度增加,但使得北京O3浓度减少;天津和石家庄存在净输出,而北京则为净流入.通过对比分析O3污染和清洁过程结果表明,化学过程主导北京和石家庄污染过程午后O3浓度增加,天津则为垂直混合,此外,北京和石家庄存在O3净输入,天津则为净输出;而清洁过程中,垂直混合主导北京和石家庄午后O3浓度增加,天津则为化学过程,同时,3座城市均存在O3净输出. |
英文摘要 |
As the problem of O3 pollution in the Beijing-Tianjin-Hebei region becomes increasingly prominent, it is of great significance to explore and analyze the ozone variation characteristics and causes of the pollution process in the Beijing-Tianjin-Hebei region for regional air pollution prevention and control. The observations in this study showed that high O3 concentration in spring and summer of the Beijing-Tianjin-Hebei region was higher in the south and lower in the north. The high O3 concentration in Beijing, Tianjin, and Shijiazhuang was often accompanied by the influence of southern wind. Based on WRF-Chem model simulation and process analysis technology, the variation characteristics and causes of O3 in The Beijing-Tianjin-Hebei region in 2019 were deeply analyzed. The diurnal variations in chemical processes, vertical mixing, and transportation in typical cities showed distinct seasonal variations. In summer afternoons, chemical processes were the main source of O3 concentration increase in each city. Vertical mixing resulted in an increase in O3 concentration in Tianjin and Shijiazhuang but a decrease in Beijing. Tianjin and Shijiazhuang had a net output, whereas Beijing had a net inflow. In the polluted O3 process, the chemical process dominated the afternoon O3 concentration increasing in Beijing and Shijiazhuang, whereas vertical mixing dominated in Tianjin. In addition, there was a net input of O3 in Beijing and Shijiazhuang and a net output of O3 in Tianjin. In the clean O3 process, vertical mixing dominated the increase in O3 concentration in Beijing and Shijiazhuang in the afternoon, whereas in Tianjin it was chemical processes. At the same time, the net output of O3 existed in all three cities. |
|
|
|