首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
新安江水库悬浮颗粒物时空分布、沉降通量及其营养盐效应
摘要点击 1797  全文点击 547  投稿时间:2019-10-09  修订日期:2019-12-09
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  悬浮颗粒物  沉降物捕获器  高频监测浮标  沉降通量  新安江水库
英文关键词  suspended solids  sediment trap  high-frequency monitor buoy  sedimentation flux  Xin'anjiang Reservoir
作者单位E-mail
史鹏程 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008
安徽师范大学环境科学与工程学院, 芜湖 241003 
spc1994@126.com 
朱广伟 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008 gwzhu@niglas.ac.cn 
杨文斌 安徽师范大学环境科学与工程学院, 芜湖 241003  
许海 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008  
朱梦圆 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008  
刘明亮 杭州市环境保护科学研究院, 杭州 310000  
虞左明 杭州市环境保护科学研究院, 杭州 310000  
吴志旭 杭州市生态环境局淳安分局, 杭州 311700  
郑文婷 杭州市生态环境局淳安分局, 杭州 311700  
王裕成 杭州市生态环境局淳安分局, 杭州 311700  
笪文怡 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008  
胡林娜 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008  
中文摘要
      为分析降雨入流影响下水库悬浮颗粒物的时空分布及沉降特征,在华东地区最大水库新安江水库(千岛湖)的河流区、过渡区和湖泊区(分别对应街口、小金山和大坝这3个水质断面)布设水体沉降物自动捕获器和水质高频自动监测浮标,结合定期水样采集分析,开展了为期1 a的水体颗粒物沉降通量及其营养盐效应观测研究.结果发现,水库水体浊度、悬浮颗粒物浓度(SS)、颗粒物沉降通量与降雨量、入库流量极显著相关(P<0.01),其中浊度与SS的相关性最好(R2=0.86);在降雨较多的春夏季,SS空间差异明显(河流区 > 过渡区 > 湖泊区),而秋冬空间差异不大;颗粒物沉降通量具有明显的时空异质性,空间上河流区 > 过渡区 > 湖泊区[分别为27.82、4.34和0.26 g·(m2·d)-1],时间上春夏季 > 秋冬季;结合全湖60个点位四季悬浮物浓度调查估算,全库颗粒物沉降通量为2.57×106 t·a-1,其中春夏季沉降通量高于秋冬季;街口、小金山和大坝捕获沉降物中颗粒态氮含量(PN)分别为6812、15886和21986 mg·kg-1,磷含量(PP)分别为2545、3269和3077 mg·kg-1,自上游向下递增.统计分析表明,中雨以上降雨过程与河流区浊度增量呈指数相关(R2=0.81),持续强降雨则对浊度有累加效应,但对过渡区影响不大;SS浓度自河流入库区至下游大坝随距离增加呈较好的指数下降特征(R2=0.84),降雨较多的春夏季更为明显.结果还表明,新安江水库年均库容淤损率为0.07%,与全国其它大型水库相比较低,但是坝前沉降物营养盐含量较高,具有一定的内源释放风险;管理上应加强流域水土保持治理,降低降雨冲刷对水质的影响;同时关注坝前高营养沉积物的内源释放对水质的影响.
英文摘要
      To analyze the spatial-temporal distribution and sedimentation characteristics of suspended solids in reservoirs, high-frequency monitoring of a sediment trap and buoy, combined with three-dimensional water sampling, was conducted and analyzed in Xin'anjiang Reservoir for a year. The results showed that the turbidity data of the buoy has significant correlation with rainfall, inflow, and suspended solids (SS), particularly for SS (P<0.01, R2=0.86). There is an obvious spatial difference in SS between spring and summer, when the rainfall season occurs (river area > transition area > lake area). However, there is little difference in SS concentration between autumn and winter. There is a spatial trend of river area > transition area > lake area (with rates of 27.82, 4.34, and 0.26 g·(m2·d)-1, respectively), and a temporal trend of spring and summer > autumn and winter. The sedimentation flux of the whole lake is 2.57×106 t·a-1 combined with the investigation of the four-season SS at 60 points across the whole lake, and the settlement flux in spring and summer is higher than that in autumn and winter. The contents of particulate nitrogen (PN) in JK, XJS, and DB were 6812, 15886, and 21986 mg·kg-1, and the particulate phosphorus (PP) contents were 2545, 3269, and 3077 mg·kg-1, respectively. Statistical analysis shows that there is a good exponential relationship between moderate rainfall and turbidity growth rate in the river area of the reservoir (R2=0.81). Moreover, the continuous heavy rainfall affects turbidity in river area, but has little effect on the transition area. The concentration of SS has a good exponential decay with distance from the river to the dam (R2=0.84), especially in spring and summer. Research shows that the average annual deposition rate in Xin'anjiang Reservoir is 0.07%, lower than other large reservoirs in the country; however, there are certain risks in front of the dam because the nutrient sediments are high. The results suggest that reservoir managers should pay attention to water and soil conservation in the watershed to reduce the impact of rainfall on reservoir water quality. Meanwhile, the potential nutrient internal release risk in the downstream area before the dam should be considered.

您是第53132554位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2