首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
盐龙湖水源生态净化系统FG和MBFG演替特征及水质响应性评价
摘要点击 1854  全文点击 693  投稿时间:2019-05-09  修订日期:2019-10-16
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  生态净化系统  调控  功能群(FG和MBFG)  冗余分析  响应
英文关键词  ecological purification system  regulation  functional groups(FG and MBFG)  redundancy analysis  response
作者单位E-mail
王莲 江苏大学环境与安全工程学院, 镇江 212013
盐城工学院环境科学与工程学院, 盐城 224000 
1512831368@qq.com 
李璇 盐城工学院环境科学与工程学院, 盐城 224000 lixuan@ycit.edu.cn 
马卫星 盐城工学院环境科学与工程学院, 盐城 224000  
邹立航 江苏大学环境与安全工程学院, 镇江 212013
盐城工学院环境科学与工程学院, 盐城 224000 
 
赵强强 盐城工学院环境科学与工程学院, 盐城 224000  
丁成 江苏大学环境与安全工程学院, 镇江 212013
盐城工学院环境科学与工程学院, 盐城 224000 
ycdingc@163.com 
吴向阳 江苏大学环境与安全工程学院, 镇江 212013  
中文摘要
      为探究水源生态净化系统水质净化及浮游植物控制效能,并评价FG(functional group,FG)和MBFG(morphology-based functional group,MBFG)两种功能群对水源生态净化系统内部环境以及水质响应的有效性,于2018年夏季对盐龙湖生态净化系统各单元出水水质和浮游植物功能群进行监测分析.结果表明,盐龙湖生态净化系统能够有效净化水质,进水总磷、总氮、溶解氧和浊度的平均值分别为0.20 mg·L-1、1.91 mg·L-1、2.88 mg·L-1和60.23 NTU,经系统处理后分别为0.09 mg·L-1、0.95 mg·L-1、6.26 mg·L-1和39.53 NTU.同时,系统内部水质的空间分布具有异质性,其中溶解氧(DO)、酸碱度(pH)和浊度的空间差异显著(P<0.001).盐龙湖生态净化系统在出水处于轻度富营养状态下仍能够有效控制浮游植物密度(4.42×105~4.32×106cells·L-1),降低水华风险.研究期间绝对优势FG功能群有5个:B、P、TC、J和W1,绝对优势MBFG功能群有6个:GroupⅠ、GroupⅢ、GroupⅣ、GroupⅤ、GroupⅥ和GroupⅦ,两种绝对优势功能群都能够有效指示生境条件的变化.RDA分析表明MBFG功能群的环境解释度要高于FG功能群.研究结果表明,选择MBFG分类法研究夏季盐龙湖生态净化系统中浮游植物的动态来了解生境的变化更合适.
英文摘要
      To explore the water purification efficiency and phytoplankton control efficiency of the water source ecological purification system, and evaluate the effectiveness of the functional group (FG) and morphology-based functional group (MBFG) in response to the internal environment and water quality of the water source ecological purification system, in the summer of 2018, the water quality and phytoplankton functional groups of each unit of the Yanlong Lake ecological purification system were monitored and analyzed. The results showed that the Yanlong Lake water source ecological purification system can effectively purify the water. The average values of total phosphorus, total nitrogen, dissolved oxygen, and turbidity in the influent water were 0.20 mg·L-1, 1.91 mg·L-1, 2.88 mg·L-1, and 60.23 NTU, respectively; after system treatment, these were 0.09 mg·L-1, 0.95 mg·L-1, 6.26 mg·L-1, and 39.53 NTU, respectively. Simultaneously, the spatial distribution of water quality within the system was heterogeneous, with significant spatial differences in dissolved oxygen (DO), pH, and turbidity (P<0.001). The Yanlong Lake water source ecological purification system could effectively control the density of phytoplankton (4.42×105-4.32×106 cells·L-1) when the effluent was in a mild eutrophication state. This reduced the risk of algal blooms. There were five absolute advantage FG:B, P, TC, J, and W1. There were six absolute advantage MBFG:GroupⅠ, GroupⅢ, GroupⅣ, GroupⅤ, GroupⅥ, and GroupⅦ. Both absolute dominant functional groups were effective in indicating changes in habitat conditions. The results of RDA analysis found that the environmental interpretation of the MBFG was higher than that of the FG. The results suggested that it is more appropriate to study the dynamics of phytoplankton in the Yanlong Lake ecological purification system in summer by selecting the MBFG classification method.

您是第53300328位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2