首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
滤速与水质对低温含铁锰氨地下水中氨去除的影响
摘要点击 1268  全文点击 498  投稿时间:2019-09-30  修订日期:2019-10-29
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  低温  铁锰  硝化  全程自养脱氮(CANON)  滤速  浓度
英文关键词  low temperature  iron and manganese  nitrification  completely autotrophic ammonium removal over nitrite (CANON)  filter speed  concentration
作者单位E-mail
张杰 北京工业大学水质科学与水环境恢复工程北京市重点实验室, 北京 100124
哈尔滨工业大学城市水资源与水环境国家重点实验室, 哈尔滨 150090 
lidong2006@bjut.edu.cn 
梅宁 北京工业大学水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
刘孟浩 北京工业大学水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
叶雪松 哈尔滨工业大学城市水资源与水环境国家重点实验室, 哈尔滨 150090  
李冬 北京工业大学水质科学与水环境恢复工程北京市重点实验室, 北京 100124 lidong2006@bjut.edu.cn 
中文摘要
      在某除铁锰氨氮地下水水厂,以中试滤柱开展了低温(6~8℃)生物除铁锰硝化耦合CANON[Fe(Ⅱ)2.91~6.35 mg·L-1、Mn(Ⅱ)0.47~0.98 mg·L-1和NH4+-N 1.15~2.26 mg·L-1]工艺运行实验,探究滤速与水质对氨氮去除的影响.结果表明,停运1个月的成熟低温铁锰氨生物滤柱以2 m·h-1的滤速经过40 d的培养,成功启动了低温生物除铁锰硝化耦合CANON工艺.在此工艺中当保持进水浓度不变,提升滤速会降低滤柱对氨氮的网捕效率,增加滤层深处的氨氮浓度,提高滤层深处AnAOB对氨氮离子的网捕效率,进而导致水中经CANON作用去除的氨氮增加,而硝化作用去除的氨氮降低;当保持滤速不变,提升进水氨氮浓度会使更高浓度的氨氮进入滤层,增加了氨氮和亚氮共存区域中氨氮的浓度,提高了滤层中AnAOB对氨氮离子的网捕效率,进而导致CANON作用去除的氨氮增加.
英文摘要
      In a groundwater plant we carried out a process operation test of biological removal of iron and manganese nitrification coupled with completely autotrophic ammonium removal over nitrite (CANON) (Fe(Ⅱ) 2.91-6.35 mg·L-1, Mn(Ⅱ) 0.47-0.98 mg·L-1, NH4+-N 1.15-2.26 mg·L-1) at low temperature (6-8℃), to explore the effects of filter speed and water quality on ammonia nitrogen removal. The results showed that the mature low-temperature biological filter column, which had been out of service for one month, was cultured for 40 days at a filtration rate of 2 m·h-1 and successfully started. In this process, when the water inlet concentration remained the same, the improved filter speed would reduce the efficiency of ammonia nitrogen capture by the filter column, increase the concentration of ammonia nitrogen in the depth of the filter layer, and improve the efficiency of ammonia nitrogen ions capture by anaerobic ammonia oxidation bacteria (AnAOB) in the depth of the filter layer, so that the ammonia nitrogen removed by CANON in the water increased, while the ammonia nitrogen removed by nitrification decreased. When the filter speed remained unchanged, the concentration of ammonia nitrogen in water was increased to make the ammonia nitrogen with higher concentration enter the filter layer, which increased the concentration of ammonia nitrogen in the zone where ammonia nitrogen and nitrous nitrogen coexist, and improved the net catching efficiency of AnAOB on ammonia nitrogen ions in the filter layer, thus resulting in an increase in ammonia nitrogen removed by CANON.

您是第53296213位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2