首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
组合生物滤池对养殖废水的净化效率及影响因素分析
摘要点击 2339  全文点击 814  投稿时间:2016-11-04  修订日期:2016-12-27
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  曝气垂直流滤池  折流式水平流滤池  水力负荷  分流比  去除效率  组合系统
英文关键词  aerated vertical-flow filter  baffled horizontal-flow filter  hydraulic loading rate  diversion ratio  removal efficiency  combined system
作者单位E-mail
张世羊 中国水产科学研究院珠江水产研究所, 农业部热带亚热带水产资源利用与养殖重点实验室, 广州 510380
武汉理工大学土木工程与建筑学院, 武汉 430070 
zhangshiyang7@126.com 
张胜花 中南民族大学资源与环境学院, 武汉 430074  
张翔凌 武汉理工大学土木工程与建筑学院, 武汉 430070  
王广军 中国水产科学研究院珠江水产研究所, 农业部热带亚热带水产资源利用与养殖重点实验室, 广州 510380 gjwang@prfri.ac.cn 
中文摘要
      生物滤池作为一种有效的污水处理技术,已有广泛应用.但是关于组合生物滤池净化效能与影响因素系统分析仍然缺乏报道.为此,设计构建了曝气垂直流滤池+折流式水平流滤池的组合系统,通过设定不同的水力负荷(131、94、60 mm·d-1)及分流比(8:2、6:4、4:6)来探究运行工况的调整对组合系统净化效能的影响.结果表明,曝气垂直流滤池对有机物、氨氮及溶解性氮的平均去除率在80%以上,而折流式水平流滤池对氨氮、总氮及溶解性氮的平均去除率在40%以下.不同运行工况对生物滤池的净化效能存在显著影响,且两种不同类型滤池的净化效能也存在显著差异(P<0.05).氧化分解是两种滤池中有机物去除的主要途径之一.两种滤池内都存在明显的硝化-反硝化,它们是滤池去除总氮的主要途径.垂直流滤池内的硝化-反硝化强度都高于水平流滤池.磷的去除主要受控于水力负荷、温度、溶解氧、有机物等,表明微生物吸收是滤池除磷的主要方式之一.相比于单一垂直流滤池,组合系统对总有机物和总磷的去除分别提高了4.4%和23.2%,对总氮的去除却降低了12.1%.降低分流比有助于提升水平流滤池反硝化强度,但是由于从原水中引入过多的氨氮,又水平流滤池的硝化能力有限,进而导致组合系统总氮去除率下降.因此,根据处理原水组成,控制适宜的分流比、停留时间及滤池内的氧化还原条件是提升该组合系统整体净化效果的关键.
英文摘要
      As an effective technology for wastewater treatment, bio-filter has been widely used. Nevertheless, there is still a lack of systematic report on purification efficiency and influencing factors of combined bio-filters. To this end, a novel combined system that consisted of aerated vertical-flow filter (AVF) followed by baffled horizontal-flow filter (BHF) was designed. After setting a series of hydraulic loading rates (131, 94 and 60 mm·d-1) and diversion ratios (8:2、6:4、4:6), we comprehensively assessed the impact of running condition adjustment on treatment performance by multiple statistical analyses. The results showed that, the average removal rates of organic matter, ammonia nitrogen and dissolved nitrogen in AVF were all above 80%, while the average removal rates of ammonia nitrogen, total nitrogen and dissolved nitrogen in BHF were all below 40%. Different running conditions had a significant (P<0.05) impact on treatment performance. Meanwhile, there were significant differences in purification efficiency between the two different kinds of filters. Oxidative degradation was one of the main ways to remove organic matter in the two kinds of filters. There were obvious nitrification and denitrification processes within the two kinds of filters. Nitrification followed by denitrification was the main way to remove total nitrogen since ammonium occupied the most portion of total nitrogen in the synthetic wastewater. Meanwhile, the intensity of nitrification and denitrification in AVF was obviously higher than that in BHF. Phosphorus removal was mainly controlled by hydraulic loading rate, temperature, dissolved oxygen, organic matter, etc. This might indicate that microbial absorption was one of the main ways to remove phosphorus for the two filters. Compared to the sole AVF, the removal of total organic matter and total phosphorus in the combined system was increased by 4.4% and 23.2%, respectively, but the removal of total nitrogen was reduced by 12.1%. Reducing the diversion ratio was helpful to improve the denitrification intensity in BHF. However, due to the introduction of excessive ammonia from the raw wastewater, as well as the limited nitrification capacity in BHF, the removal rate of total nitrogen for the combined system was decreased. Therefore, according to the composition of treated raw wastewater, the control of appropriate diversion ratio, residence time and redox conditions inside the filter bed was the key to enhance the overall performance of the combined system.

您是第52997647位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2