首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
模拟条件下侵蚀-沉积部位土壤CO2通量变化及其影响因素
摘要点击 1712  全文点击 715  投稿时间:2015-12-21  修订日期:2016-04-05
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  侵蚀区  沉积区  土壤CO2通量  土壤水分  SOC  土壤温度  径流泥沙
英文关键词  erosion site  deposition site  soil CO2 flux  soil moisture  SOC  soil temperature  runoff and sediment
作者单位E-mail
杜兰兰 西北农林科技大学水土保持研究所, 杨凌 712100 llxbnlkjdx510@163.com 
王志齐 西北农林科技大学水土保持研究所, 杨凌 712100  
王蕊 西北农林科技大学资源与环境学院, 杨凌 712100  
李如剑 西北农林科技大学水土保持研究所, 杨凌 712100  
吴得峰 西北农林科技大学资源与环境学院, 杨凌 712100  
赵慢 西北农林科技大学资源与环境学院, 杨凌 712100  
孙棋棋 中国科学院水利部水土保持研究所, 杨凌 712100  
高鑫 西北农林科技大学水土保持研究所, 杨凌 712100  
郭胜利 西北农林科技大学水土保持研究所, 杨凌 712100
西北农林科技大学资源与环境学院, 杨凌 712100
中国科学院水利部水土保持研究所, 杨凌 712100 
slguo@ms.iswc.ac.cn 
中文摘要
      了解土壤侵蚀与沉积对土壤CO2通量的影响有助于正确评价侵蚀区域土壤和大气之间CO2交换过程与机制.本试验于2014和2015年雨季(7~9月)在长武农田生态系统国家野外站进行,利用土壤碳通量测量系统LI-8100(LI-COR,Lincoln,NE,USA)和土壤温度及水分数据采集器(EM50,DECAGON,USA),测定侵蚀和沉积地貌下的土壤CO2通量、土壤水分和温度,并采集径流泥沙.结果表明:1侵蚀区和沉积区土壤CO2通量均值依次为1.05 μmol·(m2·s)-1和1.38 μmol·(m2·s)-1,沉积区较侵蚀区增幅达31%(P<0.05);沉积区土壤CO2通量温度敏感性(8.14)是侵蚀区(2.34)3倍以上.2侵蚀区与沉积区土壤水分均值分别为0.21 m3·m-3和0.25 m3·m-3,沉积区较侵蚀区提高19%(P<0.05).尽管侵蚀区较沉积区土壤温度稍有提高(7%),但差异不显著.3泥沙中有机碳平均含量(7.26 g·kg-1)较试验之初(6.83 g·kg-1)提高6%.4土壤水分和土壤有机碳(SOC)在侵蚀区和沉积区的重新分布对土壤CO2通量空间变异有重要影响.
英文摘要
      The CO2 flux from soil is an important component of global carbon cycle, and a small variation of soil CO2 flux can prominently influence atmospheric CO2 concentration and soil organic carbon stock. Soil erosion significantly influences soil CO2 emission. However, the process of soil CO2 flux during soil erosion and soil deposition remains uncertain. At the present study, a simulated experiment on soil erosion and deposition was conducted at Changwu State Key Agro-Ecological Station, Shaanxi, China. From July to September in 2014 and 2015, soil CO2 flux was periodically measured using an automated CO2 flux system LI-8100 (LI-COR, Lincoln, NE, USA) and soil temperature and moisture were collected by series data collection system of soil temperature and soil moisture (EM50, DECAGON, USA). The measurement frequency of soil CO2 flux was once a week during 09:00 and 11:00. Soil temperature and soil moisture of 10 cm topsoil were measured continuously (at an interval of 30 minutes) during the experiment. At the same time, runoff and sediment were collected as well in each rain event, and then SOC content in sediment was measured. The results showed that soil CO2 flux between erosion and deposition sites had a significant difference (P<0.05), and soil CO2 flux at deposition site [mean value 1.38 μmol·(m2·s)-1] was 31% higher than that of soil CO2 flux at deposition site [1.05 μmol·(m2·s)-1], while temperature sensitivity at deposition site (Q10:8.14) was 3 times as high as that at erosion site (2.34). Soil moisture at deposition site was 19% higher than that at erosion site (P<0.05). Soil temperature was slightly higher at erosion site. The average SOC content (7.26 g·kg-1) increased by 6% in the sediment compared with the initial SOC content (6.83 g·kg-1). Soil moisture and SOC redistribution across erosion and deposition sites were influencing factors for soil CO2 flux under erosional environment. In conclusion, soil CO2 flux showed a significant variation at erosion site and deposition site. Changes in soil moisture and SOC contributed much to the difference in soil CO2 flux across erosion and deposition sites.

您是第53320934位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2