准东煤田露天矿区土壤重金属污染现状评价及来源分析 |
摘要点击 4293 全文点击 2037 投稿时间:2015-11-04 修订日期:2015-12-17 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 重金属 土壤污染 露天煤矿 来源分析 准东 |
英文关键词 heavy metals soil contamination opencast sources analysis East Junggar Basin |
|
中文摘要 |
为研究准东煤田露天矿区土壤重金属污染现状,分析了研究区Zn、Cu、Cr、Pb、Hg和As这6种土壤重金属含量水平,采用内梅罗指数法、地质累积指数法、潜在生态危害指数法对准东矿区土壤重金属进行评价,并利用分层比较、降尘法以及距离分析,结合统计分析法对金属污染来源进行分析.结果表明,与环境质量Ⅰ级标准相比,As超标最严重,Cr次之,Hg、Cu超标率较小,Zn、Pb未检出超限; 以环境质量Ⅰ级标准为评价依据,研究区土壤重金属总体处于轻度污染水平,单项污染指数依次为As(2.07)> Cr(0.95)> Cu(0.55)> Zn(0.48)> Hg(0.45)> Pb(0.38),除As为重度污染外,其他均为清洁水平; Hg的地质累积指数为1.14,为中度污染; 研究区生态风险等级为中,主要贡献因子是Hg,生态危害系数为251.40; 重金属来源分析表明:Pb在剖面中的变异性主要来自于煤炭燃烧或其他人为活动,Hg和As元素可能共同来源于煤炭燃烧的释放,距离矿区的远近不是影响重金属差异的主要因素,还可能与地形、坡向、风向等其他因素有关. |
英文摘要 |
The opencast mine of East Junggar Basin in Xinjiang is the largest self-contained coalfield in China, and the ecological environment of the opencast is very fragile because of its arid climate and poor soil. In this study, 50 soil samples (from 0 to 30 cm depth soil at intervals of 10 cm) in opencast Mine of East Junggar Basin in Xinjiang were collected in order to explore the heavy metals contamination of the coal mining. The contents of zinc (Zn), copper (Cu), cadmium (Cr), lead (Pb), mercury (Hg) and arsenic (As) were measured and the degree of pollution was assessed by Nemerow index, geo-accumulation (Igeo) index and potential ecological risk index. In addition, the layered comparison, dust fall and the distance between coal mine and samples location were used to analyze the source of heavy metals contamination. The results showed that value of As surpassed the Chinese soil quality standard class I (GB 15618-1995) mostly severely, followed by Cr, a relatively lower surpass was obtained by Hg and Cu, while Zn and Pb did not surpass the standard. According to the standard, the soil heavy metals content of research region was in light pollution status and the pollution index for each heavy metal followed the order of As (2.07)>Cr (0.95)>Cu (0.55)>Zn (0.48)>Hg (0.45)>Pb (0.38), which demonstrated a heavy pollution of As and clean status of others. Additionally, an Igeo value of 1.14 for Hg reflected a moderated pollution. The major contribution factor was Hg with a risk index of 251.40. The source analysis showed that the content of Pb in the surface soil(10-20 cm) was different from that in the deep layer (20-30 cm), which may be caused by coal combustion and other human activities. The sources of Hg and As were similar and may come from coal combustion. The distance to the mining area was not the major factor affecting the diffusion of heavy metals, other candidate factors included terrain, aspect and wind direction, etc. |
|
|
|