首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
残留过氧化氢对微波-过氧化氢-碱预处理后污泥水解酸化的影响
摘要点击 1389  全文点击 736  投稿时间:2015-03-17  修订日期:2015-04-21
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  微波-过氧化氢-碱  污泥预处理  水解酸化  过氧化氢酶  二氧化锰  pH
英文关键词  microwave-H2O2-alkaline  sludge pretreatment  hydrolysis acidification  catalase  manganese dioxide  pH
作者单位E-mail
贾瑞来 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085 jiaruilai.dlut@qq.com 
刘吉宝 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085  
魏源送 中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室, 北京 100085
中国科学院生态环境研究中心鄂尔多斯固体废弃物资源化工程技术研究所, 鄂尔多斯 017000 
yswei@rcees.ac.cn 
才兴 沈阳环境科学研究院, 沈阳 110016  
中文摘要
      前期研究发现,由于残留过氧化氢的影响,经过微波-过氧化氢-碱MW-H2O2-OH(pH=10)预处理的污泥进行水解酸化时存在产酸滞后期. 因此,本研究通过批量试验,考察了残留过氧化氢对MW-H2O2-OH(pH=10和pH=11,MHO10和MHO11)预处理后污泥水解酸化的影响. 结果表明,过氧化氢酶比二氧化锰具有更高效率的过氧化氢分解能力,能够在10 min内完全降解过氧化氢. 水解酸化的8 d时间内,四组试验的SCOD(溶解性COD)浓度和总挥发性脂肪酸(VFA)浓度均呈现先增加后降低的趋势,优化水解时间均为0.5 d;MHO10组、MHO10+过氧化氢酶组(MHO10C)和MHO11+过氧化氢酶组(MHO11C)的优化水解酸化时间均为3 d, MHO11组的优化水解酸化时间为4 d. 残留过氧化氢对MHO10预处理后污泥的水解酸化有抑制作用,存在产酸滞后期. 与MHO10预处理相比,MHO11预处理释放的SCOD提高了19.29%,释放了更多的有机物,进而显著提高了总VFA产量,5 d时总VFA产量显著提高了84.80%,且MHO11组可以轻微缩短产酸滞后期. 投加100 mg·L-1过氧化氢酶,明显缩短解除了MHO10组和MHO11组0.5 d的产酸滞后期,并提高了总VFA产量,3 d时,MHO10C组、MHO11C组的总VFA浓度分别比MHO10组提高了23.61%、50.12%. MHO10组、MHO10C组和MHO11C组VFA的主要组分均为乙酸、异戊酸、正丁酸,而MHO11组VFA的主要组分为乙酸、丙酸、异戊酸,在各组的优化水解酸化时间,3种主要的VFA组分之和均占总VFA的75%以上,其中乙酸所占比例均在41%以上.
英文摘要
      Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline(MW-H2O2-OH,pH=10) pretreatment had an acid production lag due to the residual hydrogen peroxide.In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH=10 or pH=11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments.Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min.During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased.The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH(pH=10) group, MW-H2O2-OH(pH=10)+catalase group and MW-H2O2-OH (pH=11)+catalase group.The optimized hydrolysis acidification time for MW-H2O2-OH (pH=11) group was 4 d.Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH=10) pretreatment, resulting in a lag in acidification stage.Compared with MW-H2O2-OH (pH=10) pretreatment, MW-H2O2-OH (pH=11) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH=11) group could shorten the lag time slightly.Dosing catalase (100 mg·L-1) after the MW-H2O2-OH (pH=10 or pH=11) pretreatment not only significantly shortened the lag time(0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH=10)+catalase group and MW-H2O2-OH (pH=11)+catalase group, compared with MW-H2O2-OH (pH=10)group at 3d of hydrolysis acidification time.For MW-H2O2-OH (pH=10) group, MW-H2O2-OH(pH=10)+catalase group and MW-H2O2-OH(pH=11)+catalase group, the dominant VFAs were acetic, iso-valeric and n-butyric acids.For MW-H2O2-OH(pH=11) group, the dominant VFAs were acetic, propionic and iso-valeric acids.In the optimized hydrolysis acidification time for each group, percentages of the three main acids accounted for more than 75% of total VFAs, and percentages of acetic acid accounted for more than 41% of total VFAs.

您是第53349564位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2